lteEqualizeZF

Обеспечивающая нуль коррекция

Синтаксис

[out,csi] = lteEqualizeZF(rxgrid,channelest)

Описание

пример

[out,csi] = lteEqualizeZF(rxgrid,channelest) возвращает компенсируемые данные в многомерном массиве, out, путем применения коррекции принуждения нуля MIMO к полученной сетке информационного ресурса в матричном rxgrid, использования информации о канале в матрице входа channelest.

Для каждого элемента ресурса функция вычисляет псевдоинверсию канала и компенсирует соответствующий полученный сигнал.

Также вход channelest может быть обеспечен как трехмерный массив размера, который NRE-by-NRxAnts-by-P и вход rxgrid могут быть обеспечены как матрица размера NRE-by-NRxAnts. В этом случае первые две размерности уменьшались до одной размерности соответствующей индексацией через частоту и местоположения времени элементов ресурса интереса, обычно для одного физического канала. Выходные параметры, out и csi, имеют размер (N × M)-by-P.

Примеры

свернуть все

Компенсируйте полученный сигнал для RMC R.4 после оценки канала. Используйте нулевой эквалайзер принуждения.

Создайте конфигурационную структуру всей ячейки и сгенерируйте сигнал передачи. Сконфигурируйте канал распространения.

enb = lteRMCDL('R.4');                 
[txSignal,~,info] = lteRMCDLTool(enb,[1;0;0;1]);

chcfg.DelayProfile = 'EPA';
chcfg.NRxAnts = 1;
chcfg.DopplerFreq = 70;
chcfg.MIMOCorrelation = 'Low';
chcfg.SamplingRate = info.SamplingRate;
chcfg.Seed = 1;
chcfg.InitPhase = 'Random';
chcfg.InitTime = 0;         

txSignal = [txSignal; zeros(15,1)];
N = length(txSignal);
noise = 1e-3*complex(randn(N,chcfg.NRxAnts),randn(N,chcfg.NRxAnts));
rxSignal = lteFadingChannel(chcfg,txSignal)+noise;

Выполните синхронизацию и демодуляцию OFDM.

offset = lteDLFrameOffset(enb,rxSignal);
rxGrid = lteOFDMDemodulate(enb,rxSignal(1+offset:end,:));

Создайте конфигурационную структуру оценки канала и выполните оценку канала.

cec.FreqWindow = 9;
cec.TimeWindow = 9;
cec.InterpType = 'Cubic';
cec.PilotAverage = 'UserDefined';
cec.InterpWinSize = 3;
cec.InterpWindow = 'Causal';
hest = lteDLChannelEstimate(enb,cec,rxGrid);

Компенсируйте и постройте полученные и компенсируемые сетки.

eqGrid = lteEqualizeZF(rxGrid,hest);

subplot(2,1,1);
surf(abs(rxGrid));
title('Received grid');
xlabel('OFDM symbol'); 
ylabel('Subcarrier');

subplot(2,1,2);
surf(abs(eqGrid));
title('Equalized grid');
xlabel('OFDM symbol'); 
ylabel('Subcarrier');

Входные параметры

свернуть все

Полученная сетка информационного ресурса, заданная как 3-D числовой массив или 2D числовая матрица. Как 3-D числовой массив, это имеет размер N-by-M-by-NRxAnts, где N является количеством поднесущих, M является количеством символов OFDM, и NRxAnts является количеством, получают антенны.

Также как 2D числовая матрица, это имеет размер NRE-by-NRxAnts. В этом случае первые две размерности уменьшались до одной размерности соответствующей индексацией через частоту и местоположения времени элементов ресурса интереса, обычно для одного физического канала.

Типы данных: double
Поддержка комплексного числа: Да

Информация канала, указанная как 4-D числовой массив или 3-D числовой массив. Как 4-D числовой массив, это имеет размер N-by-M-by-NRxAnts-by-P. N является количеством поднесущих, M является количеством символов OFDM, NRxAnts является количеством, получают антенны, и P является количеством антенн передачи. Каждый элемент является комплексным числом, представляющим узкополосный канал для каждого элемента ресурса и для каждой ссылки между передачей, и получите антенны. Эта матрица может быть получена с помощью функции оценки канала, такой как lteDLChannelEstimate.

Также как 3-D числовой массив, это имеет размер NRE-by-NRxAnts-by-P. В этом случае первые две размерности уменьшались до одной размерности соответствующей индексацией через частоту и местоположения времени элементов ресурса интереса, обычно для одного физического канала.

Типы данных: double
Поддержка комплексного числа: Да

Выходные аргументы

свернуть все

Компенсируемые выходные данные, возвращенные как 3-D числовой массив или 2D числовая матрица. Как 3-D числовой массив, это имеет размер N-by-M-by-P. N является количеством поднесущих, M является количеством символов OFDM, и P является количеством антенн передачи.

Также, если channelest обеспечивается как трехмерный массив, out является 2D числовой матрицей размера (N × M)-by-P. В этом случае первые две размерности уменьшались до одной размерности соответствующей индексацией через частоту и местоположения времени элементов ресурса интереса, обычно для одного физического канала.

Типы данных: double
Поддержка комплексного числа: Да

Мягкая информация о состоянии канала, возвращенная как 3-D числовой массив или 2D числовая матрица, одного размера как out. Как 3-D числовой массив, это имеет размер N-by-M-by-P. N является количеством поднесущих, M является количеством символов OFDM, и P является количеством антенн передачи. csi обеспечивает, оценка полученного усиления RE для каждого получила RE.

Также, если channelest обеспечивается как трехмерный массив, csi является 2D числовой матрицей размера (N ×M)-by-P. В этом случае первые две размерности уменьшались до одной размерности соответствующей индексацией через частоту и местоположения времени элементов ресурса интереса, обычно для одного физического канала.

Типы данных: double

Введенный в R2014a