шаг

Системный объект: поэтапный. BackscatterSonarTarget
Пакет: поэтапный

Обратное рассеяние входящий сигнал гидролокатора

Синтаксис

refl_sig = step(target,sig,ang)
refl_sig = step(target,sig,ang,update)

Описание

Примечание

Вместо того, чтобы использовать метод step, чтобы выполнить операцию, заданную Системой object™, можно вызвать объект с аргументами, как будто это была функция. Например, y = step(obj,x) и y = obj(x) выполняют эквивалентные операции.

пример

refl_sig = step(target,sig,ang) возвращает отраженный сигнал, refl_sig, инцидентного сигнала гидролокатора, sig, прибывающего в цель от угла, ang.

пример

refl_sig = step(target,sig,ang,update) update использования, чтобы управлять, обновить ли значения целевой силы (TS). Этот синтаксис применяется, когда вы устанавливаете свойство Model на одну из колеблющихся моделей TS: 'Swerling1', 'Swerling2', 'Swerling3' или 'Swerling4'. Если update является true, новое значение TS сгенерировано. Если update является false, предыдущее значение TS используется.

Примечание

Объект выполняет инициализацию в первый раз, когда объект выполняется. Эта инициализация блокирует ненастраиваемые свойства (MATLAB) и входные спецификации, такие как размерности, сложность и тип данных входных данных. Если вы изменяете ненастраиваемое свойство или входную спецификацию, Системный объект выдает ошибку. Чтобы изменить ненастраиваемые свойства или входные параметры, необходимо сначала вызвать метод release, чтобы разблокировать объект.

Входные параметры

развернуть все

Цель гидролокатора обратного рассеяния, заданная как Системный объект phased.BackscatterSonarTarget.

Сигнал гидролокатора, заданный как N-by-M матрица с комплексным знаком. Количество N является количеством выборок сигнала и M, является количеством сигналов, отражающихся от цели. Каждый столбец соответствует независимому инциденту сигнала под различным углом отражения.

Когда вы задаете свойство TSPattern как Q-by-P-by-M, отдельный шаблон используется для каждого сигнала. Когда вы задаете TSPattern как Q-by-Pmatrix, тот же шаблон используется для каждого сигнала.

Размер первой размерности входной матрицы может отличаться, чтобы моделировать изменяющуюся длину сигнала. Изменение размера может произойти, например, в случае импульсной формы волны с переменной импульсной частотой повторения.

Пример: [1,1;j,1;0.5,0]

Типы данных: double
Поддержка комплексного числа: Да

Инцидентное направление сигнала, заданное как 2-by-1 положительный вектор-столбец с действительным знаком или 2-by-M положительная матрица столбца с действительным знаком. Каждый столбец ang задает инцидентное направление соответствующего сигнала в форме пары [AzimuthAngle;ElevationAngle]. Модули являются степенями. Количество столбцов в ang должно совпадать с количеством независимых сигналов в sig.

Пример: [30;45]

Типы данных: double

Позвольте значениям TS для моделей колебания обновлять, заданный как false или true. Когда update является true, новое значение TS сгенерировано с каждым вызовом метода step. Если update является false, TS остается неизменным с каждым вызовом step.

Пример: true

Типы данных: логический

Выходные аргументы

развернуть все

Узкополосная связь отразила сигнал гидролокатора, заданный как N-by-M матрица с комплексным знаком. Каждый столбец содержит независимый сигнал, отраженный от цели.

Количество N является количеством выборок сигнала и M, является количеством сигналов, отражающихся от цели. Каждый столбец соответствует отражающемуся углу.

Вывод refl_sig содержит выборки сигнала, прибывающие к месту назначения сигнала в течение текущего входного периода времени. Когда время распространения от источника до места назначения превысит длительность кадра текущего времени, вывод не будет содержать все вклады от входа кадра текущего времени. Остающийся вывод появляется в следующем вызове step.

Примеры

развернуть все

Вычислите отраженный сигнал гидролокатора от не колеблющейся цели точки с пиковой целевой силой (TS) 10,0 дб. В иллюстративных целях используйте упрощенное выражение для шаблона TS цели. Действительные шаблоны TS более сложны. Шаблон TS покрывает область значений углов от 10 ° до 30 ° в азимуте и от 5 ° до 15 ° в повышении. TS достигает максимума в азимуте на 20 ° и повышении на 10 °. Примите, что гидролокатор, рабочая частота составляет 10 кГц и что сигнал является синусоидой на уровне 9 500 кГц.

Создайте и постройте шаблон TS.

azmax = 20.0;
elmax = 10.0;
azpatangs = [10.0:0.1:35.0];
elpatangs = [5.0:0.1:15.0];
tspattern = 10.0*cosd(4*(elpatangs - elmax))'*cosd(4*(azpatangs - azmax));
tspatterndb = 10*log10(tspattern);
imagesc(azpatangs,elpatangs,tspatterndb)
colorbar
axis image
axis tight
title('TS')
xlabel('Azimuth (deg)')
ylabel('Elevation (deg)')

Сгенерируйте и постройте 50 выборок сигнала гидролокатора.

freq = 9.5e3;
fs = 100*freq;
nsamp = 500;
t = [0:(nsamp-1)]'/fs;
sig = sin(2*pi*freq*t);
plot(t*1e6,sig)
xlabel('Time (\mu seconds)')
ylabel('Signal Amplitude')
grid

Создайте Систему phased.BackscatterSonarTarget object™.

target = phased.BackscatterSonarTarget('Model','Nonfluctuating', ...
    'AzimuthAngles',azpatangs,'ElevationAngles',elpatangs, ...
    'TSPattern',tspattern);

Для последовательности различных углов инцидента азимута (под постоянным углом повышения), постройте максимальную рассеянную амплитуду сигнала.

az0 = 13.0;
el = 10.0;
naz = 20;
az = az0 + [0:1:20];
naz = length(az);
ss = zeros(1,naz);
for k = 1:naz
    y = target(sig,[az(k);el]);
    ss(k) = max(abs(y));
end
plot(az,ss,'o')
xlabel('Azimuth (deg)')
ylabel('Backscattered Signal Amplitude')
grid

Вычислите отраженный сигнал гидролокатора от Swerling2, колеблющегося цель точки с пиковой целевой силой (TS) 10,0 дб. В иллюстративных целях используйте упрощенное выражение для шаблона TS цели. Действительные шаблоны TS более сложны. Шаблон TS покрывает область значений углов от 10°to 30 ° в азимуте и от 5 ° ro 15 ° в повышении. TS достигает максимума в азимуте на 20 ° и повышении на 10 °. Примите, что гидролокатор, рабочая частота составляет 10 кГц и что сигнал является синусоидой на уровне 9 500 кГц.

Создайте и постройте шаблон TS.

azmax = 20.0;
elmax = 10.0;
azpatangs = [10.0:0.1:35.0];
elpatangs = [5.0:0.1:15.0];
tspattern = 10.0*cosd(4*(elpatangs - elmax))'*cosd(4*(azpatangs - azmax));
tspatterndb = 10*log10(tspattern);
imagesc(azpatangs,elpatangs,tspatterndb)
colorbar
axis image
axis tight
title('TS')
xlabel('Azimuth (deg)')
ylabel('Elevation (deg)')

Сгенерируйте сигнал гидролокатора.

freq = 9.5e3;
fs = 10*freq;
nsamp = 50;
t = [0:(nsamp-1)]'/fs;
sig = sin(2*pi*freq*t);

Создайте Систему phased.BackscatterSonarTarget object™.

target = phased.BackscatterSonarTarget('Model','Nonfluctuating',...
    'AzimuthAngles',azpatangs,'ElevationAngles',elpatangs,...
    'TSPattern',tspattern,'Model','Swerling2');

Вычислите и постройте колеблющуюся амплитуду сигнала для 20 временных шагов.

az = 20.0;
el = 10.0;
nsteps = 20;
ss = zeros(1,nsteps);
for k = 1:nsteps
    y = target(sig,[az;el],true);
    ss(k) = max(abs(y));
end
plot([0:(nsteps-1)]*1000/fs,ss,'o')
xlabel('Time (msec)')
ylabel('Backscattered Signal Amplitude')
grid

Введенный в R2017a

Для просмотра документации необходимо авторизоваться на сайте