Синхронная модель 1.0 машины

Синхронная машина с полевой схемой и никаким демпфером

  • Библиотека:
  • Simscape / Электрический / Электромеханический / Синхронный

Описание

Блок Synchronous Machine Model 1.0 использует упрощенную модель параметризации для синхронных машин. Используйте блок, чтобы смоделировать синхронные машины с обмоткой возбуждения и никакими демпферами.

Данные показывают эквивалентную электрическую схему для обмоток ротора и статора.

Моторная конструкция

Схема показывает моторную конструкцию с однополюсной парой на роторе. Для соглашения осей, когда угол механического устройства ротора θr является нулем, a - выравниваются фаза и потоки постоянного магнита. Блок поддерживает второе определение оси ротора, для которого угол механического устройства ротора задан как угол между a - фазой магнитная ось и ротором q - ось.

Уравнения

Напряжения через обмотки статора заданы

[vavbvc]=[Rs000Rs000Rs][iaibic]+[dψadtdψbdtdψcdt],

где:

  • va, vb и vc являются отдельными напряжениями фазы через обмотки статора.

  • Rs является эквивалентным сопротивлением каждой обмотки статора.

  • ia, ib и ic являются токами, текущими в обмотках статора.

  • dψadt,dψbdt, и dψcdt скорости изменения магнитного потока в каждой обмотке статора.

Напряжение через обмотку возбуждения выражается как

vf=Rfif+dψfdt,

где:

  • vf является отдельным напряжением фазы через обмотку возбуждения.

  • Rf является эквивалентным сопротивлением обмотки возбуждения.

  • if является текущим течением в обмотке возбуждения.

  • dψfdt скорость изменения магнитного потока в обмотке возбуждения.

Постоянный магнит, обмотка возбуждения и обмотки статора трехзвездочной раны способствуют потоку, соединяющему каждую обмотку. Общий поток задан

[ψaψbψc]=[LaaLabLacLbaLbbLbcLcaLcbLcc][iaibic]+[ψamψbmψcm]+[LamfLbmfLcmf]if,

где:

  • ψa, ψb и ψc являются общими потоками, соединяющими каждую обмотку статора.

  • Laa, Lbb и Lcc являются самоиндукциями обмоток статора.

  • Lab, Lac, Lba, Lbc, Lca и Lcb являются взаимной индуктивностью обмоток статора.

  • ψam, ψbm и ψcm являются потоками намагничивания, соединяющими обмотки статора.

  • Lamf, Lbmf и Lcmf являются взаимной индуктивностью обмотки возбуждения.

Индуктивность в обмотках статора является функциями ротора электрический угол и задана

θe=Nθr,

Laa=Ls+Lmпотому что(2θe),

Lbb=Ls+Lmпотому что(2(θe2π/3)),

Lcc=Ls+Lmпотому что(2(θe+2π/3)),

Lab=Lba=MsLmпотому что(2(θe+π/6)),

Lbc=Lcb=MsLmпотому что(2(θe+π/62π/3)),

Lca=Lac=MsLmпотому что(2(θr+π/6+2π/3)),

где:

  • N является количеством пар полюса ротора.

  • θr является углом механического устройства ротора.

  • θe является ротором электрический угол.

  • Ls является самоиндукцией статора на фазу. Это значение является средней самоиндукцией каждой из обмоток статора.

  • Lm является колебанием индуктивности статора. Это значение является амплитудой колебания самоиндукции и взаимной индуктивности с изменяющимся углом ротора.

  • Ms является статором взаимная индуктивность. Это значение является средней взаимной индуктивностью между обмотками статора.

Обмотка соединения потока намагничивания, a-a’ является максимумом когда θr = 0 ° и нуль когда θr = 90 °. Поэтому:

Lmf=[LamfLbmfLcmf]=[Lmfпотому чтоθrLmfпотому что(θr2π/3)Lmfпотому что(θr+2π/3)]

и

Ψf=Lfif+LmfT[iaibic],

где:

  • Lmf является взаимной полевой индуктивностью арматуры.

  • ψf является потоком, соединяющим обмотку возбуждения.

  • Lf является индуктивностью обмотки возбуждения.

  • [Lmf]T преобразование вектора Lmf, то есть,

    [Lmf]T=[LamfLbmfLcmf]T=[LamfLbmfLcmf].

Упрощенные уравнения

Применение преобразования Парка к блоку, электрические уравнения определения производят выражение для крутящего момента, который независим от угла ротора.

Преобразование Парка задано

P=2/3[потому чтоθeпотому что(θe2π/3)потому что(θe+2π/3)sinθesin(θe2π/3)sin(θe+2π/3)0.50.50.5].

Применение преобразования Парка к первым двум электрическим уравнениям определения производит уравнения, которые задают поведение блока:

vd=Rsid+Lddiddt+LmfdifdtNωiqLq,

vq=Rsiq+Lqdiqdt+Nω(idLd+ifLmf),

v0=Rsi0+L0di0dt,

vf=Rfif+Lfdifdt+32Lmfdiddt,

T=32N(iq(idLd+ifLmf)idiqLq),

и

Jdωdt=T=TLBmω.

где:

  • vd, vq и v0 является d - ось, q - ось и напряжения нулевой последовательности. Эти напряжения заданы

    [vdvqv0]=P[vavbvc].

  • id, iq и i0 является d - ось, q - ось и токи нулевой последовательности, заданные

    [idiqi0]=P[iaibic].

  • Ld является статором d - индуктивность оси. Ld = Ls + Ms + 3/2 Lm.

  • ω является механической скоростью вращения.

  • Lq является статором q - индуктивность оси. Lq = Ls + Ms − 3/2 Lm.

  • L0 является индуктивностью нулевой последовательности статора. L0 = Ls – 2Ms.

  • T является крутящим моментом ротора. Для блока Synchronous Machine Model 1.0 крутящий момент вытекает из случая машины (порт C сохранения блока) к ротору машины (порт R сохранения блока).

  • J является инерцией ротора.

  • TL является крутящим моментом загрузки.

  • Bm является затуханием ротора.

Предположения

Блок принимает, что распределение потока является синусоидальным.

Порты

Сохранение

развернуть все

Механический вращательный порт сохранения сопоставлен с ротором машины.

Механический вращательный порт сохранения сопоставлен со случаем машины.

Расширяемый трехфазный порт сопоставлен с обмотками статора.

Электрический порт сохранения сопоставлен с нейтральной фазой.

Электрический порт сохранения сопоставил с обмоткой возбуждения положительный терминал.

Электрический порт сохранения сопоставил с обмоткой возбуждения отрицательный терминал.

Параметры

развернуть все

Основной

Количество постоянного магнита подпирает пары шестами на роторе.

Метод для параметризации статора.

Зависимости

Выбор Specify Ld, Lq and L0 включает эти параметры:

  • Stator d-axis inductance, Ld

  • Stator q-axis inductance, Lq

  • Stator zero-sequence inductance, L0

Выбор Specify Ls, Lm, and Ms включает эти параметры:

  • Stator self-inductance per phase, Ls

  • Stator inductance fluctuation, Lm

  • Stator mutual inductance, Ms

Индуктивность прямой оси статора машины.

Зависимости

Чтобы включить этот параметр, установите Stator parameterization на Specify Ld, Lq and L0.

Индуктивность квадратурной оси статора машины.

Зависимости

Чтобы включить этот параметр, установите Stator parameterization на Specify Ld, Lq and L0.

Индуктивность нулевой оси для статора машины.

Зависимости

Чтобы включить этот параметр, установите Stator parameterization на Specify Ld, Lq and L0.

Средняя самоиндукция трех обмоток статора.

Зависимости

Чтобы включить этот параметр, установите Stator parameterization на Specify Ls, Lm, and Ms.

Амплитуда колебания самоиндукции и взаимной индуктивности с углом ротора.

Зависимости

Чтобы включить этот параметр, установите Stator parameterization на Specify Ls, Lm, and Ms.

Средняя взаимная индуктивность между обмотками статора.

Зависимости

Чтобы включить этот параметр, установите Stator parameterization на Specify Ls, Lm, and Ms.

Индуктивность обмотки возбуждения.

Поле арматуры взаимная индуктивность.

Сопротивление каждой из обмоток статора.

Сопротивление обмотки возбуждения.

Опция, чтобы пропустить условия нулевой последовательности. Выбор:

  • Включение Включайте условия нулевой последовательности. Чтобы приоритизировать точность модели, используйте эту настройку по умолчанию. Используя эти результаты опции по ошибке для симуляций, которые используют решатель Разделения. Для получения дополнительной информации смотрите, что Скорость симуляции Увеличения Использует Решатель Разделения (Simscape).

  • Exclude — Исключите условия нулевой последовательности. Чтобы приоритизировать скорость симуляции для настольной симуляции или развертывания приложений, выберите эту опцию.

Зависимости

Выбор Include представляет параметр нулевой последовательности в настройках Impedances.

Механическое устройство

Инерция ротора.

Затухание ротора.

Начальные условия

Начальный d - q - 0 - последовательность и токи обмотки возбуждения.

Контрольная точка для углового измерения ротора. Если вы выбираете значение по умолчанию, ротор и a - потоки фазы выравниваются для угла нулевого ротора. В противном случае a - текущая фаза генерирует максимальное значение крутящего момента для угла нулевого ротора.

Угол ротора во время начала симуляции.

Скорость ротора во время начала симуляции. Если инерция ротора, J, является нулем, начальная скорость ротора является нулевым об/мин, и начальная скорость ротора проигнорирована.

Образцовые примеры

Synchronous Machine State-Space Control

Синхронное управление пространства состояний машины

Управляйте токами в основанном на синхронной машине (SM) диске тяги с помощью управления пространства состояний. Высоковольтная батарея питает SM через управляемый трехфазный конвертер для обмоток статора и через управляемый 2D квадрантный прерыватель для обмотки ротора. Идеальный угловой скоростной источник обеспечивает загрузку. SM действует ниже основной скорости. В каждый демонстрационный момент запрос крутящего момента преобразован в соответствующие текущие ссылки с помощью нулевого подхода управления d-оси. Контроллер обратной связи состояния управляет токами в кадре ссылки ротора. Наблюдатель Luenberger получает скоростного зависимого feedforward условия перед управлением. Симуляция использует несколько шагов крутящего момента и в режимах двигателя и в генератора. Планирование задач реализовано как конечный автомат Stateflow®. Подсистема Осциллографов содержит осциллографы, которые позволяют вам видеть результаты симуляции.

Ссылки

[1] Kundur, P. Устойчивость энергосистемы и управление. Нью-Йорк, Нью-Йорк: Макгроу Хилл, 1993.

[2] Андерсон, пополудни анализ неработающих энергосистем. Нажатие IEEE, разработка энергосистем, 1995.

[3] Retif, J. M. С. Линь-Ши, утра Llor и Ф. Морэнд “Новое гибридное управление прямого крутящего момента для извилистого ротора синхронная машина”. 2 004 IEEE 35-я Ежегодная Конференция специалистов по Силовой электронике. Издание 2 (2004): 1438–1442.

[4] Общество энергетики IEEE. Станд. IEEE 1110-2002. Руководство IEEE для синхронных методов моделирования генератора и приложения в исследованиях устойчивости энергосистемы. Пискатауэй, NJ: IEEE, 2002.

Расширенные возможности

Генерация кода C/C++
Генерация кода C и C++ с помощью MATLAB® Coder™.

Введенный в R2018a

Для просмотра документации необходимо авторизоваться на сайте