exponenta event banner

Оцените специфичные для категории параметры PK для нескольких человек

Этот пример показывает, как оценить специфичный для категории (такой как молодой по сравнению со старым, штекерным по сравнению с розеткой), отдельно-специфичные, и параметры всей генеральной совокупности с помощью данных о профиле PK от нескольких человек.

Фон

Предположим, что вы имеете данные о концентрации плазмы препарата от 30 человек и хотите оценить фармакокинетические параметры, а именно, объемы центрального и периферийного отсека, разрешения и межразделенного на отсеки разрешения. Примите, что концентрация препарата по сравнению с профилем времени следует за снижением biexponential Ct=Ae-at+Be-bt, где Ct концентрация препарата во время t, и a и b наклоны для соответствующих экспоненциальных снижений.

Загрузка данных

Эти синтетические данные содержат ход времени плазменных концентраций 30 человек после дозы шарика (100 мг), измеренных в разное время и для центральных и для периферийных отсеков. Это также содержит категориальные переменные, а именно, Sex и Age.

clear
load(fullfile(matlabroot,'examples','simbio','sd5_302RAgeSex.mat'))

Преобразуйте в groupedData Формат

Преобразуйте набор данных в объект groupedData, который является необходимым форматом данных для подходящего функционального sbiofit. Объект groupedData также позволяет вам независимую переменную набора и имена переменных группы (если они существуют). Установите модули ID, Time, CentralConc, PeripheralConc, Age и переменных Sex. Модули являются дополнительными и только необходимыми для функции UnitConversion, которая автоматически преобразовывает соответствие с физическими количествами в одну сопоставимую модульную систему.

gData = groupedData(data);
gData.Properties.VariableUnits = {'','hour','milligram/liter','milligram/liter','',''};
gData.Properties
ans = struct with fields:
                Description: ''
                   UserData: []
             DimensionNames: {'Row'  'Variables'}
              VariableNames: {1x6 cell}
       VariableDescriptions: {}
              VariableUnits: {1x6 cell}
         VariableContinuity: []
                   RowNames: {}
           CustomProperties: [1x1 matlab.tabular.CustomProperties]
          GroupVariableName: 'ID'
    IndependentVariableName: 'Time'

Свойства IndependentVariableName и GroupVariableName были автоматически установлены в переменные Time и ID данных.

Визуализируйте данные

Отобразите данные об ответе для каждого человека.

t = sbiotrellis(gData,'ID','Time',{'CentralConc','PeripheralConc'},...
                'Marker','+','LineStyle','none');
% Resize the figure.
t.hFig.Position(:) = [100 100 1280 800];

Настройте модель 2D отсека

Пользуйтесь встроенной библиотекой PK, чтобы создать модель 2D отсека с дозированием вливания и устранением первого порядка, где уровень устранения зависит от разрешения и объема центрального отсека. Используйте объект configset включить модульное преобразование.

pkmd                                    = PKModelDesign;
pkc1                                    = addCompartment(pkmd,'Central');
pkc1.DosingType                         = 'Bolus';
pkc1.EliminationType                    = 'linear-clearance';
pkc1.HasResponseVariable                = true;
pkc2                                    = addCompartment(pkmd,'Peripheral');
model                                   = construct(pkmd);
configset                               = getconfigset(model);
configset.CompileOptions.UnitConversion = true;

Для получения дополнительной информации при создании разделенных на отсеки моделей PK с помощью SimBiology® встроенная библиотека, смотрите, Создают Фармакокинетические Модели.

Задайте дозирование

Примите, что каждый человек получает дозу шарика 100 мг во время = 0. Для получения дополнительной информации при подготовке различных стратегий дозирования, смотрите Дозы.

dose             = sbiodose('dose','TargetName','Drug_Central');
dose.StartTime   = 0;
dose.Amount      = 100;
dose.AmountUnits = 'milligram';
dose.TimeUnits   = 'hour';

Сопоставьте данные об ответе с соответствующими компонентами модели

Данные содержат измеренную плазменную концентрацию в центральных и периферийных отсеках. Сопоставьте эти переменные с соответствующими компонентами модели, которые являются Drug_Central и Drug_Peripheral.

responseMap = {'Drug_Central = CentralConc','Drug_Peripheral = PeripheralConc'};

Задайте параметры, чтобы оценить

Задайте объемы центральных и периферийных отсеков Central и Peripheral, межразделенное на отсеки разрешение Q12 и разрешение Cl_Central как параметры, чтобы оценить. Объект estimatedInfo позволяет вам опционально указать, что параметр преобразовывает, начальные значения и границы параметра. И начиная с Central и начиная с Peripheral ограничиваются быть положительными, задать логарифмическое преобразование для каждого параметра.

paramsToEstimate    = {'log(Central)', 'log(Peripheral)', 'Q12', 'Cl_Central'};
estimatedParam      = estimatedInfo(paramsToEstimate,'InitialValue',[1 1 1 1]);

Оцените отдельно-специфичные параметры

Оцените один набор параметров для каждого человека путем установки аргумента пары "имя-значение" 'Pooled' false.

unpooledFit =  sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',false);

Отображение результатов

Постройте подходящие результаты по сравнению с исходными данными для каждого человека (группа).

t = plot(unpooledFit);
% Resize the figure.
t.hFig.Position(:) = [100 100 1280 800];

Для необъединенной подгонки всегда возвращается sbiofit, каждый заканчивается объект для каждого человека.

Исследуйте оценки параметра на зависимости от категории

Исследуйте необъединенные оценки, чтобы видеть, существуют ли какие-либо специфичные для категории параметры, то есть, если некоторые параметры связаны с одной или несколькими категориями. Если существуют какие-либо зависимости от категории, может быть возможно уменьшать количество степеней свободы путем оценки только специфичных для категории значений для тех параметров.

Сначала извлеките ID и значения категории для каждого ID

catParamValues = unique(gData(:,{'ID','Sex','Age'}));

Добавьте переменные в таблицу, содержащую оценку каждого параметра.

allParamValues            = vertcat(unpooledFit.ParameterEstimates);
catParamValues.Central    = allParamValues.Estimate(strcmp(allParamValues.Name, 'Central'));
catParamValues.Peripheral = allParamValues.Estimate(strcmp(allParamValues.Name, 'Peripheral'));
catParamValues.Q12        = allParamValues.Estimate(strcmp(allParamValues.Name, 'Q12'));
catParamValues.Cl_Central = allParamValues.Estimate(strcmp(allParamValues.Name, 'Cl_Central'));

Постройте оценки каждого параметра для каждой категории. gscatter требует Statistics and Machine Learning Toolbox™. Если у вас нет его, используйте другие альтернативные функции построения графика, такие как plot.

h           = figure;
ylabels     = {'Central','Peripheral','Cl\_Central','Q12'};
plotNumber  = 1;
for i = 1:4
    thisParam = estimatedParam(i).Name;
    
    % Plot for Sex category
    subplot(4,2,plotNumber);
    plotNumber  = plotNumber + 1;
    gscatter(double(catParamValues.Sex), catParamValues.(thisParam), catParamValues.Sex);
    ax          = gca;
    ax.XTick    = [];
    ylabel(ylabels(i));
    legend('Location','bestoutside')
    % Plot for Age category
    subplot(4,2,plotNumber);
    plotNumber  = plotNumber + 1;
    gscatter(double(catParamValues.Age), catParamValues.(thisParam), catParamValues.Age);
    ax          = gca;
    ax.XTick    = [];
    ylabel(ylabels(i));
    legend('Location','bestoutside')
end
% Resize the figure.
h.Position(:) = [100 100 1280 800];

На основе графика кажется, что молодые люди склонны иметь более высокие объемы центральных и периферийных отсеков (Central, Peripheral), чем старые люди (то есть, объемы, кажется, являются возрастными). Кроме того, штекеры имеют тенденцию иметь более низкий уровень раскрываемости преступлений (Cl_Central), чем розетки, но противоположное для параметра Q12 (то есть, разрешение и Q12, кажется, сексуально-специфичны).

Оцените специфичные для категории параметры

Используйте свойство 'CategoryVariableName' объекта estimatedInfo задать который категория использовать во время подбора кривой. Используйте 'Sex' в качестве группы к пригодному для разрешения параметры Q12 и Cl_Central. Используйте 'Age' в качестве группы к пригодному для параметров Peripheral и Central.

estimatedParam(1).CategoryVariableName = 'Age';
estimatedParam(2).CategoryVariableName = 'Age';
estimatedParam(3).CategoryVariableName = 'Sex';
estimatedParam(4).CategoryVariableName = 'Sex';
categoryFit = sbiofit(model,gData,responseMap,estimatedParam,dose)
categoryFit = 
  OptimResults with properties:

                   ExitFlag: 3
                     Output: [1x1 struct]
                  GroupName: []
                       Beta: [8x5 table]
         ParameterEstimates: [120x6 table]
                          J: [240x8x2 double]
                       COVB: [8x8 double]
           CovarianceMatrix: [8x8 double]
                          R: [240x2 double]
                        MSE: 0.4362
                        SSE: 205.8690
                    Weights: []
              LogLikelihood: -477.9195
                        AIC: 971.8390
                        BIC: 1.0052e+03
                        DFE: 472
             DependentFiles: {1x3 cell}
    EstimatedParameterNames: {'Central'  'Peripheral'  'Q12'  'Cl_Central'}
             ErrorModelInfo: [1x3 table]
         EstimationFunction: 'lsqnonlin'

При подборе кривой по категориям (или группа), всегда возвращается sbiofit, каждый заканчивается объект, не один для каждого уровня категории. Это вызвано тем, что и штекерные и розеточные люди считаются частью той же оптимизации с помощью тех же ошибочных параметров модели и параметров ошибок, так же для молодых и старых людей.

Постройте результаты

Постройте специфичные для категории предполагаемые результаты.

t = plot(categoryFit);
% Resize the figure.
t.hFig.Position(:) = [100 100 1280 800];

Для Cl_Central и параметров Q12, все штекеры имели те же оценки, и так же для розеток. Для Central и параметров Peripheral, у всех молодых людей были те же оценки, и так же для старых людей.

Оцените параметры всей генеральной совокупности

Чтобы лучше сравнить результаты, соответствуйте модели ко всем данным, объединенным вместе, то есть, оцените один набор параметров для всех людей путем установки аргумента пары "имя-значение" 'Pooled' true. Предупреждающее сообщение говорит вам, что эта опция проигнорирует любую специфичную для категории информацию (если они будут существовать).

pooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',true);
Warning: CategoryVariableName property of the estimatedInfo object is ignored when using the 'Pooled' option.

Постройте результаты

Постройте подходящие результаты по сравнению с исходными данными. Несмотря на то, что отдельный график был сгенерирован для каждого человека, данные были адаптированы с помощью того же набора параметров (то есть, у всех людей была та же подходящая строка).

t = plot(pooledFit);
% Resize the figure.
t.hFig.Position(:) = [100 100 1280 800];

Сравните невязки

Сравните невязки CentralConc и ответов PeripheralConc для каждой подгонки.

t = gData.Time;
allResid(:,:,1) = pooledFit.R;
allResid(:,:,2) = categoryFit.R;
allResid(:,:,3) = vertcat(unpooledFit.R);

h = figure;
responseList = {'CentralConc', 'PeripheralConc'};
for i = 1:2
    subplot(2,1,i);
    oneResid = squeeze(allResid(:,i,:));
    plot(t,oneResid,'o');
    refline(0,0); % A reference line representing a zero residual
    title(sprintf('Residuals (%s)', responseList{i}));
    xlabel('Time');
    ylabel('Residuals');
    legend({'Pooled','Category-Specific','Unpooled'});
end
% Resize the figure.
h.Position(:) = [100 100 1280 800];

Как показано в графике, необъединенная подгонка произвела лучшую подгонку к данным, когда это соответствует данным к каждому человеку. Это ожидалось, поскольку это использовало большую часть количества степеней свободы. Подгонка категории уменьшала количество степеней свободы подгонкой данных к двум категориям (пол и возраст). В результате невязки были больше, чем необъединенная подгонка, но еще меньшими, чем подгонка генеральной совокупности, которая оценила всего один набор параметров для всех людей. Подходящая категорией сила быть хорошим компромиссом между необъединенным и объединенным подбором кривой при условии, что любая иерархическая модель существует в ваших данных.

Смотрите также

Похожие темы