Класс RepeatedMeasuresModel

Повторный класс модели мер

Описание

Объект RepeatedMeasuresModel представляет модель, адаптированную к данным с несколькими измерениями на предмет. Объект включает данные, адаптированные коэффициенты, параметры ковариации, матрицу проекта, ошибочные степени свободы, и между - и факторные имена в предметах для повторной модели мер. Можно предсказать образцовые ответы с помощью метода predict и сгенерировать случайные данные в новых точках проекта с помощью метода random.

Конструкция

Можно соответствовать повторной модели мер использование fitrm(t,modelspec).

Входные параметры

развернуть все

Входные данные, который включает значения переменных отклика и факторов между предметами, чтобы использовать в качестве предикторов в повторной модели мер, заданной как таблица.

Типы данных: table

Формула для образцовой спецификации, заданной как вектор символов или скаляр строки формы 'y1-yk ~ terms'. Задайте условия с помощью обозначения Уилкинсона. fitrm обрабатывает переменные, используемые в образцовых терминах с должности категориальных, если они являются категориальными (номинальный или порядковый), логический, символьные массивы, строковые массивы или массив ячеек из символьных векторов.

Пример: 'y1-y4 ~ x1 + x2 * x3'

Типы данных: char | string

Свойства

развернуть все

Разработайте для факторов между предметами и значений повторных мер, сохраненных как таблица.

Типы данных: table

Модель для факторов между предметами, сохраненных как вектор символов. Этот вектор символов является текстовым представлением справа от тильды в образцовой спецификации, которую вы обеспечиваете при подборе кривой повторной модели мер использование fitrm.

Типы данных: char

Имена переменных, используемых настолько же между предметами, включают повторную модель мер, rm, сохраненный как массив ячеек из символьных векторов.

Типы данных: cell

Имена переменных, используемых в качестве переменных отклика в повторной модели мер, rm, сохраненном как массив ячеек из символьных векторов.

Типы данных: cell

Значения факторов в предмете, сохраненных как таблица.

Типы данных: table

Модель для факторов в предметах, сохраненных как вектор символов.

Можно задать WithinModel как вектор символов или скаляр строки, использующий запись через точку: Mdl.WithinModel = newWithinModelValue.

Имена факторов в предмете, сохраненных как массив ячеек из символьных векторов.

Типы данных: cell

Значения предполагаемых коэффициентов для подбора кривой повторным мерам как функция условий в модели между предметами, сохраненной как таблица.

fitrm' задает коэффициенты для категориального термина с помощью кодирования 'эффектов', что значит содействующую сумму для 0. Существует один коэффициент для каждого уровня кроме первого. Подразумеваемый коэффициент для первого уровня является суммой других коэффициентов для термина.

Можно отобразить содействующие значения как матрицу, а не таблицу с помощью coef = r.Coefficients{:,:}.

Можно отобразить крайние средние значения для всех уровней с помощью метода margmean.

Типы данных: table

Предполагаемые ковариации ответа, то есть, ковариация повторных мер, сохраненных как таблица. fitrm вычисляет ковариации вокруг среднего значения, возвращенного подходящей повторной моделью rm мер.

Можно отобразить значения ковариации как матрицу, а не таблицу с помощью coef = r.Covariance{:,:}.

Типы данных: table

Ошибочные степени свободы, сохраненные как скалярное значение. DFE является количеством наблюдений минус количество предполагаемых коэффициентов в модели между предметами.

Типы данных: double

Методы

anovaДисперсионный анализ для эффектов между предметами
\epsilonКорректировка эпсилона к повторным мерам anova
grpstatsВычислите описательную статистику повторных данных о мерах группой
manovaМногомерный дисперсионный анализ
margmean Оцените крайние средние значения
mauchlyТест Мочли для шарообразности
multcompareНесколько сравнение предполагаемых крайних средних значений
графикОтобразите данные на графике с дополнительной группировкой
plotprofile Постройте ожидаемые крайние средние значения с дополнительной группировкой
предсказатьВычислите ожидаемые значения, данные значения предиктора
случайный Сгенерируйте новые случайные значения ответа, данные значения предиктора
RenovaПовторный дисперсионный анализ мер

Примеры

свернуть все

Загрузите выборочные данные.

load fisheriris

Вектор-столбец, species, состоит из ирисовых цветов трех различных разновидностей: setosa, versicolor, virginica. Двойной матричный meas состоит из четырех типов измерений на цветах: длина и ширина чашелистиков и лепестков в сантиметрах, соответственно.

Храните данные в табличном массиве.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...
'VariableNames',{'species','meas1','meas2','meas3','meas4'});
Meas = table([1 2 3 4]','VariableNames',{'Measurements'});

Соответствуйте повторной модели мер, где измерения являются ответами, и разновидность является переменной прогноза.

rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas)
rm = 
  RepeatedMeasuresModel with properties:

   Between Subjects:
         BetweenDesign: [150x5 table]
         ResponseNames: {'meas1'  'meas2'  'meas3'  'meas4'}
    BetweenFactorNames: {'species'}
          BetweenModel: '1 + species'

   Within Subjects:
          WithinDesign: [4x1 table]
     WithinFactorNames: {'Measurements'}
           WithinModel: 'separatemeans'

   Estimates:
          Coefficients: [3x4 table]
            Covariance: [4x4 table]

Отобразите коэффициенты.

rm.Coefficients
ans=3×4 table
                           meas1       meas2      meas3      meas4  
                          ________    ________    ______    ________

    (Intercept)             5.8433      3.0573     3.758      1.1993
    species_setosa        -0.83733     0.37067    -2.296    -0.95333
    species_versicolor    0.092667    -0.28733     0.502     0.12667

fitrm использует контрасты 'effects', что означает, что коэффициенты суммируют к 0. rm.DesignMatrix имеет один столбец 1 с для прерывания и два других столбца species_setosa и species_versicolor, которые являются следующие:

species_setosa={1,ifsetosa0,ifversicolor-1,ifvirginica

и

species_versicolor={0,ifsetosa1,ifversicolor-1,ifvirginica.

Отобразите ковариационную матрицу.

rm.Covariance
ans=4×4 table
              meas1       meas2       meas3       meas4  
             ________    ________    ________    ________

    meas1     0.26501    0.092721     0.16751    0.038401
    meas2    0.092721     0.11539    0.055244     0.03271
    meas3     0.16751    0.055244     0.18519    0.042665
    meas4    0.038401     0.03271    0.042665    0.041882

Отобразите ошибочные степени свободы.

rm.DFE
ans = 147

Ошибочные степени свободы являются количеством наблюдений минус количество предполагаемых коэффициентов в модели между предметами, например, 150 – 3 = 147.

Больше о

развернуть все

Смотрите также