Выберите Data и Validation for Regression Problem

Выберите Data from Workspace

Совет

В Regression Learner таблицы являются самым легким способом работать с вашими данными, потому что они могут содержать числовой и маркировать данные. Используйте Import Tool, чтобы принести ваши данные в рабочую область MATLAB® как таблица или использовать табличные функции, чтобы создать table из переменных рабочей области. См. Таблицы (MATLAB).

Если ваши предикторы являются матрицей, и ответ является вектором, объедините их в таблицу с помощью функции table.

  1. Загрузите свои данные в рабочее пространство MATLAB.

    Переменные прогноза могут быть числовыми, категориальными, строка, или логические векторы, массивы ячеек из символьных векторов или символьные массивы. Переменная отклика должна быть вектором с плавающей точкой (одинарная или двойная точность).

    Например, наборы данных, смотрите Данные В качестве примера для Регрессии.

  2. На вкладке Apps нажмите Regression Learner, чтобы открыть приложение.

  3. На вкладке Regression Learner, в разделе File, нажимают New Session.

  4. В диалоговом окне New Session выберите таблицу или матрицу от переменных рабочей области.

    Если вы выбираете матрицу, выбираете, использовать ли строки или столбцы для наблюдений путем нажатия на переключатели.

  5. Наблюдайте роли, которые приложение выбирает для переменных на основе их типа данных. Приложение пытается выбрать подходящую переменную отклика, и все другие переменные являются предикторами. Измените выборы в случае необходимости. Добавьте или удалите предикторы с помощью флажков. Добавьте или удалите все предикторы путем нажатия на Add All или Remove All. Можно также добавить или удалить несколько предикторов путем выбора их в таблице, и затем нажатия на Add N или Remove N, где N является количеством выбранных предикторов. Кнопки Add All и Remove All изменяются на Add N и Remove N, когда вы выбираете несколько предикторов.

  6. Нажмите Start Session, чтобы принять схему валидации по умолчанию и продолжиться. Опция валидации по умолчанию является 5-кратной перекрестной проверкой, которая защищает от сверхподбора кривой.

    Совет

    Если у вас есть большой набор данных, вы можете хотеть переключиться на валидацию затяжки. Чтобы узнать больше, смотрите, Выбирают Validation Scheme.

Для следующих шагов см. Модели Регрессии Train в Приложении Regression Learner.

Импорт данных из файла

  1. На вкладке Regression Learner, в разделе File, выбирают New Session> From File.

  2. Выберите тип файла в списке, таком как электронные таблицы, текстовые файлы или разделенные от запятой значения (.csv) файлы, или выберите All Files, чтобы просмотреть другие типы файлов, такие как .dat.

Данные в качестве примера для регрессии

Чтобы начать использовать Regression Learner, попробуйте эти наборы данных в качестве примера.

ИмяРазмерОписание
АвтомобилиКоличество предикторов: 7
Количество наблюдений: 406
Ответ: MPG (мили на галлон)

Данные по различным моделям автомобилей, 1970–1982. Предскажите экономию топлива (в милях на галлон), или одна из других характеристик.

Для постепенного примера смотрите, что Деревья Регрессии Train Используют Приложение Regression Learner.

Составьте таблицу от переменных в файле carbig.mat:
load carbig
cartable = table(Acceleration, Cylinders, Displacement,...
Horsepower, Model_Year, Weight, Origin, MPG);
Морское ушкоКоличество предикторов: 8
Количество наблюдений: 4177
Ответ: Rings

Измерения морского ушка (группа морских улиток). Предскажите возраст морских ушек, который тесно связан с количеством, звенит в их интерпретаторах.

Загрузите данные из Репозитория Машинного обучения UCI и сохраните его в вашей текущей папке. Считайте данные в таблицу и задайте имена переменных.

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/abalone/abalone.data';
websave('abalone.csv',url);
varnames = {'Sex'; 'Length'; 'Diameter'; 'Height'; 'Whole_weight';...
'Shucked_weight'; 'Viscera_weight'; 'Shell_weight'; 'Rings'}; 
abalonetable = readtable('abalone.csv');
abalonetable.Properties.VariableNames = varnames;
БольницаКоличество предикторов: 5
Количество наблюдений: 100
Ответ: BloodPressure_2

Моделируемые данные больницы. Предскажите кровяное давление пациентов.

Составьте таблицу от переменной hospital в файле hospital.mat:
load hospital.mat
hospitaltable = dataset2table(hospital(:,2:end-1));

Выберите Validation Scheme

Выберите метод валидации, чтобы исследовать прогнозирующую точность подобранных моделей. Валидация оценивает производительность модели на новых данных и помогает вам выбрать лучшую модель. Валидация защищает от сверхподбора кривой. Модель, которая слишком гибка и страдает от сверхподбора кривой, имеет худшую точность валидации. Выберите схему валидации перед обучением любые модели так, чтобы можно было сравнить все модели на сеансе с помощью той же схемы валидации.

Совет

Попробуйте схему валидации по умолчанию и нажмите Start Session, чтобы продолжиться. Опция по умолчанию является 5-кратной перекрестной проверкой, которая защищает от сверхподбора кривой.

Если у вас есть большой набор данных и обучение, модели берут слишком долго перекрестную проверку использования, повторно импортируйте свои данные и попробуйте более быструю валидацию затяжки вместо этого.

  • Cross-Validation: Выберите количество сгибов (или деления), чтобы разделить набор данных с помощью управления ползунком.

    Если вы выбираете сгибы k, то приложение:

    1. Делит данные в k непересекающиеся наборы или сгибы

    2. Для каждого сгиба:

      1. Обучает модель с помощью наблюдений из сгиба

      2. Оценивает использование производительности модели, окутывают данные

    3. Вычисляет среднюю тестовую ошибку по всем сгибам

    Этот метод дает хорошую оценку прогнозирующей точности итоговой модели, обученной с помощью полного набора данных. Метод требует нескольких подгонок, но делает эффективное использование всех данных, таким образом, это работает хорошо на небольшие наборы данных.

  • Holdout Validation: Выберите процент данных, чтобы использовать в качестве набора валидации с помощью управления ползунком. Приложение обучает модель на наборе обучающих данных и оценивает его производительность с набором валидации. Модель, используемая для валидации, основана на только фрагменте данных, таким образом, валидация затяжки подходит только для больших наборов данных. Итоговая модель обучена с помощью полного набора данных.

  • No Validation: Никакая защита от сверхподбора кривой. Приложение использует все данные для обучения и вычисляет коэффициент ошибок тех же данных. Без любых тестовых данных вы получаете нереалистичную оценку производительности модели на новых данных. Таким образом, учебная демонстрационная точность, вероятно, будет нереалистично высока, и прогнозирующая точность, вероятно, будет ниже.

    Чтобы помочь вам постараться не сверхсоответствовать к данным тренировки, выберите схему валидации вместо этого.

Примечание

Схема валидации только влияет на способ, которым Regression Learner вычисляет метрики валидации. Итоговая модель всегда обучается с помощью полного набора данных.

Все модели, которые вы обучаете после выбора данных, используют ту же схему валидации, которую вы выбираете в этом диалоговом окне. Можно сравнить все модели на сеансе с помощью той же схемы валидации.

Чтобы изменить выбор валидации и обучить новые модели, можно выбрать данные снова, но вы теряете любые обученные модели. Приложение предупреждает вас, что импортирование данных запускает новый сеанс. Сохраните любые обученные модели, вы хотите придерживаться рабочей области, и затем импортировать данные.

Для следующих моделей обучения шагов см. Модели Регрессии Train в Приложении Regression Learner.

Похожие темы