Создайте простую текстовую модель для классификации

Этот пример показывает, как обучить простой текстовый классификатор на количествах частотности слова с помощью модели сумки слов.

Можно создать простую модель классификации, которая использует количества частотности слова в качестве предикторов. Этот пример обучает простую модель классификации предсказывать тип события прогнозов погоды с помощью текстовых описаний.

Чтобы воспроизвести результаты этого примера, установите rng на 'default'.

rng('default')

Загрузите и извлеките текстовые данные

Загрузите данные в качестве примера. Файл weatherReports.csv содержит прогнозы погоды, включая текстовое описание и категориальные метки для каждого события.

filename = "weatherReports.csv";
data = readtable(filename,'TextType','string'); 
head(data)
ans=8×16 table
            Time             event_id          state              event_type         damage_property    damage_crops    begin_lat    begin_lon    end_lat    end_lon                                                                                             event_narrative                                                                                             storm_duration    begin_day    end_day    year       end_timestamp    
    ____________________    __________    ________________    ___________________    _______________    ____________    _________    _________    _______    _______    _________________________________________________________________________________________________________________________________________________________________________________________________    ______________    _________    _______    ____    ____________________

    22-Jul-2016 16:10:00    6.4433e+05    "MISSISSIPPI"       "Thunderstorm Wind"       ""                "0.00K"         34.14        -88.63     34.122     -88.626    "Large tree down between Plantersville and Nettleton."                                                                                                                                                  00:05:00          22          22       2016    22-Jul-0016 16:15:00
    15-Jul-2016 17:15:00    6.5182e+05    "SOUTH CAROLINA"    "Heavy Rain"              "2.00K"           "0.00K"         34.94        -81.03      34.94      -81.03    "One to two feet of deep standing water developed on a street on the Winthrop University campus after more than an inch of rain fell in less than an hour. One vehicle was stalled in the water."       00:00:00          15          15       2016    15-Jul-0016 17:15:00
    15-Jul-2016 17:25:00    6.5183e+05    "SOUTH CAROLINA"    "Thunderstorm Wind"       "0.00K"           "0.00K"         35.01        -80.93      35.01      -80.93    "NWS Columbia relayed a report of trees blown down along Tom Hall St."                                                                                                                                  00:00:00          15          15       2016    15-Jul-0016 17:25:00
    16-Jul-2016 12:46:00    6.5183e+05    "NORTH CAROLINA"    "Thunderstorm Wind"       "0.00K"           "0.00K"         35.64        -82.14      35.64      -82.14    "Media reported two trees blown down along I-40 in the Old Fort area."                                                                                                                                  00:00:00          16          16       2016    16-Jul-0016 12:46:00
    15-Jul-2016 14:28:00    6.4332e+05    "MISSOURI"          "Hail"                    ""                ""              36.45        -89.97      36.45      -89.97    ""                                                                                                                                                                                                      00:07:00          15          15       2016    15-Jul-0016 14:35:00
    15-Jul-2016 16:31:00    6.4332e+05    "ARKANSAS"          "Thunderstorm Wind"       ""                "0.00K"         35.85         -90.1     35.838     -90.087    "A few tree limbs greater than 6 inches down on HWY 18 in Roseland."                                                                                                                                    00:09:00          15          15       2016    15-Jul-0016 16:40:00
    15-Jul-2016 16:03:00    6.4343e+05    "TENNESSEE"         "Thunderstorm Wind"       "20.00K"          "0.00K"        35.056       -89.937      35.05     -89.904    "Awning blown off a building on Lamar Avenue. Multiple trees down near the intersection of Winchester and Perkins."                                                                                     00:07:00          15          15       2016    15-Jul-0016 16:10:00
    15-Jul-2016 17:27:00    6.4344e+05    "TENNESSEE"         "Hail"                    ""                ""             35.385        -89.78     35.385      -89.78    "Quarter size hail near Rosemark."                                                                                                                                                                      00:05:00          15          15       2016    15-Jul-0016 17:32:00

Удалите строки с пустыми отчетами.

idx = strlength(data.event_narrative) == 0;
data(idx,:) = [];

Преобразуйте метки в столбце event_type таблицы к категориальному и просмотрите распределение классов в данных с помощью гистограммы.

data.event_type = categorical(data.event_type);
figure
h = histogram(data.event_type);
xlabel("Class")
ylabel("Frequency")
title("Class Distribution")

Классы данных являются неустойчивыми с несколькими классами, содержащими немного наблюдений. Чтобы гарантировать, что можно разделить данные так, чтобы разделы содержали наблюдения для каждого класса, удалите любые классы, которые появляются меньше чем десять раз.

Получите подсчет частот классов и их имен от гистограммы.

classCounts = h.BinCounts;
classNames = h.Categories;

Найдите классы, содержащие меньше чем десять наблюдений, и удалите эти нечастые классы из данных.

idxLowCounts = classCounts < 10;
infrequentClasses = classNames(idxLowCounts);
idxInfrequent = ismember(data.event_type,infrequentClasses);
data(idxInfrequent,:) = [];

Разделите данные в учебный раздел и протянутый набор тестов. Задайте процент затяжки, чтобы быть 10%.

cvp = cvpartition(data.event_type,'Holdout',0.1);
dataTrain = data(cvp.training,:);
dataTest = data(cvp.test,:);

Извлеките текстовые данные и метки из таблиц.

textDataTrain = dataTrain.event_narrative;
textDataTest = dataTest.event_narrative;
YTrain = dataTrain.event_type;
YTest = dataTest.event_type;

Подготовьте текстовые данные к анализу

Создайте функцию, которая маркирует и предварительно обрабатывает текстовые данные, таким образом, они могут использоваться для анализа. Функциональный preprocessWeatherNarratives, выполняет следующие шаги по порядку:

  1. Маркируйте текст с помощью tokenizedDocument.

  2. Lemmatize слова с помощью normalizeWords.

  3. Сотрите пунктуацию с помощью erasePunctuation.

  4. Удалите список слов остановки (такой как "и", и) использование removeStopWords.

  5. Удалите слова с 2 или меньшим количеством символов с помощью removeShortWords.

  6. Удалите слова с 15 или больше символами с помощью removeLongWords.

Используйте пример, предварительно обрабатывающий функциональный preprocessWeatherNarratives, чтобы подготовить текстовые данные.

documents = preprocessWeatherNarratives(textDataTrain);
documents(1:5)
ans = 
  5×1 tokenizedDocument:

     5 tokens: large tree down plantersville nettleton
    18 tokens: two foot deep standing water develop street winthrop university campus inch rain fall less hour vehicle stall water
     9 tokens: nws columbia relay report tree blow down tom hall
    10 tokens: medium report two tree blow down i40 old fort area
     8 tokens: few tree limb great inch down hwy roseland

Создайте модель сумки слов из маркируемых документов.

bag = bagOfWords(documents)
bag = 
  bagOfWords with properties:

          Counts: [25316×17524 double]
      Vocabulary: [1×17524 string]
        NumWords: 17524
    NumDocuments: 25316

Удалите слова из модели сумки слов, которые не появляются больше чем два раза всего. Удалите любые документы, содержащие слова из модели сумки слов, и удалите соответствующие записи в метках.

bag = removeInfrequentWords(bag,2);
[bag,idx] = removeEmptyDocuments(bag);
YTrain(idx) = [];
bag
bag = 
  bagOfWords with properties:

          Counts: [25315×6534 double]
      Vocabulary: [1×6534 string]
        NumWords: 6534
    NumDocuments: 25315

Обучите контролируемый классификатор

Обучите контролируемую модель классификации использование количеств частотности слова из модели сумки слов и меток.

Обучите мультикласс линейная модель классификации использование fitcecoc. Задайте свойство Counts модели сумки слов быть предикторами и метками типа события, чтобы быть ответом. Задайте учеников, чтобы быть линейными. Эти ученики поддерживают разреженный ввод данных.

XTrain = bag.Counts;
mdl = fitcecoc(XTrain,YTrain,'Learners','linear')
mdl = 
  classreg.learning.classif.CompactClassificationECOC
      ResponseName: 'Y'
        ClassNames: [1×39 categorical]
    ScoreTransform: 'none'
    BinaryLearners: {741×1 cell}
      CodingMatrix: [39×741 double]


  Properties, Methods

Для лучшей подгонки можно попытаться задать различные параметры линейных учеников. Для получения дополнительной информации о линейных шаблонах ученика классификации смотрите templateLinear.

Протестируйте классификатор

Предскажите метки тестовых данных с помощью обученной модели и вычислите точность классификации. Точность классификации является пропорцией меток, которые модель предсказывает правильно.

Предварительно обработайте тестовые данные с помощью тех же шагов предварительной обработки в качестве данных тренировки. Закодируйте получившиеся тестовые документы как матрицу количеств частотности слова согласно модели сумки слов.

documentsTest = preprocessWeatherNarratives(textDataTest);
XTest = encode(bag,documentsTest);

Предскажите метки тестовых данных с помощью обученной модели и вычислите точность классификации.

YPred = predict(mdl,XTest);
acc = sum(YPred == YTest)/numel(YTest)
acc = 0.8808

Предскажите Используя новые данные

Классифицируйте тип события новых прогнозов погоды. Создайте массив строк, содержащий новые прогнозы погоды.

str = [ ...
    "A large tree is downed and blocking traffic outside Apple Hill."
    "Damage to many car windshields in parking lot."
    "Lots of water damage to computer equipment inside the office."];
documentsNew = preprocessWeatherNarratives(str);
XNew = encode(bag,documentsNew);
labelsNew = predict(mdl,XNew)
labelsNew = 3×1 categorical array
     Thunderstorm Wind 
     Thunderstorm Wind 
     Flash Flood 

Функция предварительной обработки в качестве примера

Функциональный preprocessWeatherNarratives, выполняет следующие шаги по порядку:

  1. Маркируйте текст с помощью tokenizedDocument.

  2. Lemmatize слова с помощью normalizeWords.

  3. Сотрите пунктуацию с помощью erasePunctuation.

  4. Удалите список слов остановки (такой как "и", и) использование removeStopWords.

  5. Удалите слова с 2 или меньшим количеством символов с помощью removeShortWords.

  6. Удалите слова с 15 или больше символами с помощью removeLongWords.

function documents = preprocessWeatherNarratives(textData)

% Tokenize the text.
documents = tokenizedDocument(textData);

% Lemmatize the words. To improve lemmatization, first use
% addPartOfSpeechDetails.
documents = addPartOfSpeechDetails(documents);
documents = normalizeWords(documents,'Style','lemma');

% Erase punctuation.
documents = erasePunctuation(documents);

% Remove a list of stop words.
documents = removeStopWords(documents);

% Remove words with 2 or fewer characters, and words with 15 or more
% characters.
documents = removeShortWords(documents,2);
documents = removeLongWords(documents,15);

end

Смотрите также

| | | | | | | | |

Похожие темы

Для просмотра документации необходимо авторизоваться на сайте