Сгенерируйте форму волны VHT-STF
y = wlanVHTSTF(cfg)
Создайте объект настройки VHT с пропускной способностью канала на 80 МГц. Сгенерируйте и постройте форму волны VHT-STF.
cfgVHT = wlanVHTConfig; cfgVHT.ChannelBandwidth = 'CBW80'; vstfOut = wlanVHTSTF(cfgVHT); size(vstfOut); plot(abs(vstfOut)) xlabel('Samples') ylabel('Amplitude')
Форма волны на 80 МГц является одним символом OFDM с 320 комплексными временными интервалами выходные выборки. Форма волны содержит повторяющийся короткий учебный полевой шаблон.
cfg
— Настройка форматаwlanVHTConfig
Настройка формата, заданная как объект wlanVHTConfig
. Функция wlanVHTSTF
использует обозначенные свойства объектов.
ChannelBandwidth
— Пропускная способность канала 'CBW80'
(значение по умолчанию) | 'CBW20'
| 'CBW40'
| 'CBW160'
Пропускная способность канала, заданная как 'CBW20'
, 'CBW40'
, 'CBW80'
или 'CBW160'
. Если передача имеет многого пользователя, та же пропускная способность канала применяется ко всем пользователям. Значение по умолчанию 'CBW80'
устанавливает пропускную способность канала на 80 МГц.
Типы данных: char | string
NumTransmitAntennas
— Количество антенн передачи1
(значение по умолчанию) | целое число в области значений [1, 8]Количество антенн передачи, заданных как целое число в области значений [1, 8].
Типы данных: double
NumSpaceTimeStreams
— Количество пространственно-временных потоковКоличество пространственно-временных потоков в передаче, заданной как скаляр или вектор.
Для отдельного пользователя количество пространственно-временных потоков является скалярным целым числом от 1 до 8.
Для многого пользователя количество пространственно-временных потоков является 1 NUsers вектором целых чисел от 1 до 4, где длина вектора, NUsers, является целым числом от 1 до 4.
Пример: [1 3 2]
является количеством пространственно-временных потоков для каждого пользователя.
Сумма пространственно-временных потоковых элементов вектора не должна превышать восемь.
Типы данных: double
SpatialMapping
— Пространственная схема отображения'Direct'
(значение по умолчанию) | 'Hadamard'
| 'Fourier'
| 'Custom'
Пространственная схема отображения, заданная как 'Direct'
, 'Hadamard'
, 'Fourier'
или 'Custom'
. Значение по умолчанию 'Direct'
применяется, когда NumTransmitAntennas
и NumSpaceTimeStreams
равны.
Типы данных: char | string
SpatialMappingMatrix
— Пространственная матрица отображенияПространственная матрица отображения, заданная как скаляр, матрица или трехмерный массив. Используйте это свойство применить beamforming держащаяся матрица, и вращать и масштабировать выходной вектор картопостроителя совокупности. Если применимо масштабируйтесь, пространственно-временной кодер блока вывел вместо этого. SpatialMappingMatrix
применяется, когда свойство SpatialMapping
установлено в 'Custom'
. Для получения дополнительной информации смотрите Станд. IEEE 802.11™-2012, Раздел 20.3.11.11.2.
Когда задано как скаляр, постоянное значение применяется ко всем поднесущим.
Когда задано как матрица, размером должен быть NSTS_Total-by-NT. Пространственная матрица отображения применяется ко всем поднесущим. NSTS_Total является суммой пространственно-временных потоков для всех пользователей, и NT является количеством антенн передачи.
Когда задано как трехмерный массив, размером должен быть NST-by-NSTS_Total-by-NT. NST является суммой занятых данных (NSD) и пилот (NSP) поднесущие, как определено ChannelBandwidth
. NSTS_Total является суммой пространственно-временных потоков для всех пользователей. NT является количеством антенн передачи.
ST N увеличивается с пропускной способностью канала.
ChannelBandwidth | Количество занятых поднесущих (ST N) | Количество поднесущих данных (SD N) | Количество экспериментальных поднесущих (SP N) |
---|---|---|---|
'CBW20' | 56 | 52 | 4 |
'CBW40' | 114 | 108 | 6 |
'CBW80' | 242 | 234 | 8 |
'CBW160' | 484 | 468 | 16 |
Функция вызова нормирует пространственную матрицу отображения для каждой поднесущей.
Пример: [0.5 0.3 0.4; 0.4 0.5 0.8] представляет пространственную матрицу отображения, имеющую два пространственно-временных потока и три антенны передачи.
Типы данных: double
Поддержка комплексного числа: Да
y
Форма волны временного интервала VHT-STFФорма волны временного интервала VHT-STF, возвращенная как NS-by-NT матрица. NS является количеством выборок временного интервала, и NT является количеством антенн передачи.
NS пропорционален пропускной способности канала.
ChannelBandwidth | NS |
---|---|
'CBW20' | 80 |
'CBW40' | 160 |
'CBW80' | 320 |
'CBW160' | 640 |
См., что VHT-STF Обрабатывает для деталей генерации формы волны.
Типы данных: double
Поддержка комплексного числа: Да
Короткое учебное поле очень высокой пропускной способности (VHT-STF) является одним символом OFDM (4 μs в длине), который используется, чтобы улучшить автоматическую оценку управления усилением передачу MIMO. Это расположено между VHT-SIG-A и фрагментами VHT-LTF пакета VHT.
Последовательность частотного диапазона, используемая, чтобы создать VHT-STF для передачи на 20 МГц, идентична последовательности L-STF. Дублирующиеся последовательности L-STF являются переключенной частотой и фаза, вращаемая, чтобы поддержать передачи VHT для 40 МГц, 80 МГц, и пропускную способность канала на 160 МГц. По сути, L-STF и HT-STF являются подмножествами VHT-STF.
VHT-STF задан в IEEE® Std 802.11ac™-2013, Раздел 22.3.8.3.4.
[1] Станд. IEEE 802.11ac™-2013 Стандарт IEEE для Информационных технологий — Телекоммуникаций и обмена информацией между системами — Локальными сетями и городскими компьютерными сетями — Конкретными требованиями — Часть 11: Беспроводное Среднее управление доступом (MAC) LAN и Физический уровень (PHY) Спецификации — Поправка 4: Улучшения для Очень Высокой Пропускной способности для Операции в Полосах ниже 6 ГГц.
[1] 802.11ac Станд. IEEE 2 013 Адаптированных и переизданные с разрешением от IEEE. Авторское право IEEE 2013. Все права защищены.
Вы щелкнули по ссылке, которая соответствует команде MATLAB:
Выполните эту команду, введя её в командном окне MATLAB.
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.