spectralEntropy

Спектральная энтропия для звуковых сигналов и слуховых спектрограмм

Описание

пример

entropy = spectralEntropy(x,f) возвращает спектральную энтропию сигнала, x, в зависимости от времени. Как функция интерпретирует x зависит от формы f.

пример

entropy = spectralEntropy(x,f,Name,Value) задает опции с помощью одного или нескольких Name,Value парные аргументы.

Примеры

свернуть все

Читайте в звуковом файле, вычислите энтропию с помощью параметров по умолчанию, и затем постройте результаты.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
entropy = spectralEntropy(audioIn,fs);

t = linspace(0,size(audioIn,1)/fs,size(entropy,1));
plot(t,entropy)
xlabel('Time (s)')
ylabel('Entropy')

Читайте в звуковом файле и затем вычислите mel спектрограмму с помощью melSpectrogram функция.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
[s,cf,t] = melSpectrogram(audioIn,fs);

Вычислите энтропию mel спектрограммы в зависимости от времени. Постройте график результатов.

entropy = spectralEntropy(s,cf);

plot(t,entropy)
xlabel('Time (s)')
ylabel('Entropy')

Читайте в звуковом файле.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

Вычислите энтропию спектра мощности в зависимости от времени. Вычислите энтропию для Окон Хэмминга на 50 мс данных с перекрытием на 25 мс. Используйте диапазон от 62,5 Гц до fs/2 для энтропийного вычисления. Постройте график результатов.

entropy = spectralEntropy(audioIn,fs, ...
                          'Window',hamming(round(0.05*fs)), ...
                          'OverlapLength',round(0.025*fs), ...
                          'Range',[62.5,fs/2]);
                        
t = linspace(0,size(audioIn,1)/fs,size(entropy,1));
plot(t,entropy)
xlabel('Time (s)')
ylabel('Entropy')

Создайте dsp.AudioFileReader возразите, чтобы читать в покадровых аудиоданных. Создайте dsp.SignalSink регистрировать спектральное энтропийное вычисление.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

В цикле аудиопотока:

  1. Читайте в системе координат аудиоданных.

  2. Вычислите спектральную энтропию для системы координат аудио.

  3. Регистрируйте спектральную энтропию для более позднего графического вывода.

Чтобы вычислить спектральную энтропию только для данного входного кадра, задайте окно с тем же количеством выборок как вход и обнулите длину перекрытия. Постройте записанные данные.

while ~isDone(fileReader)
    audioIn = fileReader();
    entropy = spectralEntropy(audioIn,fileReader.SampleRate, ...
                              'Window',hamming(size(audioIn,1)), ...
                              'OverlapLength',0);
    logger(entropy)
end

plot(logger.Buffer)
ylabel('Entropy')

Используйте dsp.AsyncBuffer если

  • Вход к вашему циклу аудиопотока имеет переменные выборки на систему координат.

  • Вход к вашему циклу аудиопотока имеет противоречивые выборки на систему координат с аналитическим окном spectralEntropy.

  • Вы хотите вычислить спектральную энтропию для перекрытых данных.

Создайте dsp.AsyncBuffer объект, сброс регистратор и релиз средство чтения файлов.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Укажите, что спектральная энтропия вычисляется для систем координат на 50 мс с перекрытием на 25 мс.

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

win = hamming(samplesPerFrame);

while ~isDone(fileReader)
    audioIn = fileReader();
    write(buff,audioIn);
    
    while buff.NumUnreadSamples >= samplesPerHop
        audioBuffered = read(buff,samplesPerFrame,samplesOverlap);
        
        entropy = spectralEntropy(audioBuffered,fs, ...
                                  'Window',win, ...
                                  'OverlapLength',0);
        logger(entropy)
    end
    
end
release(fileReader)

Постройте записанные данные.

plot(logger.Buffer)
ylabel('Entropy')

Входные параметры

свернуть все

Входной сигнал, заданный как вектор, матрица или трехмерный массив. Как функция интерпретирует x зависит от формы f.

Типы данных: single | double

Частота дискретизации или вектор частоты в Гц, заданном как скаляр или вектор, соответственно. Как функция интерпретирует x зависит от формы f:

  • Если f скаляр, x интерпретирован как сигнал временной области и f интерпретирован как частота дискретизации. В этом случае, x должен быть вектор действительных чисел или матрица. Если x задан как матрица, столбцы интерпретированы, когда индивидуум образовывает канал.

  • Если f вектор, x интерпретирован как сигнал частотного диапазона и f интерпретирован как частоты, в Гц, соответствуя строкам x. В этом случае, x должен быть действительный L-by-M-by-N массив, где L является количеством спектральных значений на данных частотах f, M является количеством отдельных спектров, и N является количеством каналов.

  • Количество строк x, L, должно быть равно числу элементов f.

Типы данных: single | double

Аргументы в виде пар имя-значение

Задайте дополнительные разделенные запятой пары Name,Value аргументы. Name имя аргумента и Value соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Пример: 'Window',hamming(256)

Примечание

Следующие аргументы пары "имя-значение" применяются если x сигнал временной области. Если x сигнал частотного диапазона, аргументы пары "имя-значение" проигнорированы.

Окно применяется во временном интервале, заданном как разделенная запятой пара, состоящая из 'Window' и вектор действительных чисел. Число элементов в векторе должно быть в области значений [1, размер (x,1)]. Число элементов в векторе должно также быть больше OverlapLength.

Типы данных: single | double

Количество выборок перекрывается между смежными окнами, заданными как разделенная запятой пара, состоящая из 'OverlapLength' и целое число в области значений [0, размер (Window,1)).

Типы данных: single | double

Количество интервалов раньше вычисляло ДПФ оконных входных выборок, заданных как разделенная запятой пара, состоящая из 'FFTLength' и положительное скалярное целое число. Если незаданный, FFTLength значения по умолчанию к числу элементов в Window.

Типы данных: single | double

Частотный диапазон в Гц, заданном как разделенная запятой пара, состоящая из 'Range' и двухэлементный вектор-строка из увеличения действительных значений в области значений [0, f/2].

Типы данных: single | double

Тип спектра, заданный как разделенная запятой пара, состоящая из 'SpectrumType' и 'power' или 'magnitude':

  • 'power' – Спектральная энтропия вычисляется для одностороннего спектра мощности.

  • 'magnitude' – Спектральная энтропия вычисляется для одностороннего спектра величины.

Типы данных: char | string

Выходные аргументы

свернуть все

Спектральная энтропия, возвращенная как скаляр, вектор или матрица. Каждая строка entropy соответствует спектральной энтропии окна x. Каждый столбец entropy соответствует независимому каналу.

Алгоритмы

Спектральная энтропия вычисляется как описано в [1]:

энтропия=k=b1b2skжурнал(sk)журнал(b2b1)

где

  • sk является спектральным значением в интервале k.

  • b 1 и b 2 является ребрами полосы в интервалах, по которым можно вычислить спектральную энтропию.

Ссылки

[1] Misra, H., С. Икбэл, Х. Боерлард и Х. Херманский. "Спектральная основанная на энтропии функция устойчивого ASR". 2 004 международных конференции IEEE по вопросам акустики, речи и обработки сигналов.

Расширенные возможности

Генерация кода C/C++
Генерация кода C и C++ с помощью MATLAB® Coder™.

Введенный в R2019a