Предварительная обработка данных о глубоком обучении

Управляйте и предварительно обработайте данные для глубокого обучения

Предварительная обработка данных является общим первым шагом в рабочем процессе глубокого обучения, чтобы подготовить необработанные данные в формате, который может принять сеть. Например, можно изменить размер входа изображений, чтобы совпадать с размером входного слоя изображений. Можно также предварительно обработать данные, чтобы улучшить желаемые функции или уменьшать артефакты, которые могут сместить сеть. Например, можно нормировать или удалить шум из входных данных.

Можно предварительно обработать вход изображений с операциями, такими как изменение размеров при помощи хранилищ данных и функций, доступных в MATLAB® и Deep Learning Toolbox™. Другие тулбоксы MATLAB предлагают функции, хранилища данных и приложения для маркировки, обработки и увеличения данных о глубоком обучении. Используйте специализированные инструменты от других тулбоксов MATLAB, чтобы обработать данные для областей, таких как обработка изображений, обнаружение объектов, семантическая сегментация, обработка сигналов, обработка аудиоданных и текстовая аналитика.

Приложения

Image LabelerПометьте изображения для приложений компьютерного зрения
Video LabelerПометьте видео для приложений компьютерного зрения
Ground Truth LabelerПометьте достоверные данные для автоматизированных ведущих приложений
Signal LabelerПометьте сигналы для приложений анализа или машинного и глубокого обучения
Audio LabelerЗадайте и визуализируйте метки основной истины

Темы

Предварительно обработайте данные о глубоком обучении

Предварительно обработайте изображения для глубокого обучения

Узнать, как, чтобы изменить размер изображений для обучения, прогноза и классификации, и как предварительно обработать изображения с помощью увеличения данных, преобразований и специализированных хранилищ данных.

Предварительно обработайте объемы для глубокого обучения

Считайте и предварительно обработайте объемное изображение и пометьте данные для 3-D глубокого обучения.

Предварительно обработайте данные для проблемно-ориентированного применения глубокого обучения

Выполните детерминированную или рандомизированную обработку данных для областей, таких как обработка изображений, обнаружение объектов, семантическая сегментация, обработка сигналов и обработка аудиоданных и текстовая аналитика.

Маркируйте Ground Truth Training Data

Маркируйте Pixels for Semantic Segmentation (Computer Vision Toolbox)

Пометьте пиксели для семантической сегментации с помощью Image Labeler, Video Labeler или приложения Ground Truth Labeler.

Запуск с Ground Truth Labeler (Automated Driving Toolbox)

Интерактивно помечайте прямоугольные ROI, ломаные линии или пиксели в видео или последовательности изображений при помощи приложения Ground Truth Labeler.

Автоматически маркируйте Signals (Signal Processing Toolbox)

Выполните автоматизированную маркировку сигналов.

Маркируйте Audio Using Audio Labeler (Audio Toolbox)

В интерактивном режиме задайте и визуализируйте метки основной истины для аудио наборов данных.

Настройте хранилища данных

Хранилища данных для глубокого обучения

Узнать, как использовать хранилища данных в применении глубокого обучения.

Подготовьте Datastore к регрессии от изображения к изображению

В этом примере показано, как подготовить datastore к обучению сеть регрессии от изображения к изображению использование transform и combine функции ImageDatastore.

Обучите сеть Используя данные о последовательности из памяти

В этом примере показано, как обучить нейронную сеть для глубокого обучения на данных о последовательности из памяти путем преобразования и объединения хранилищ данных.

Классифицируйте текстовые данные Используя сверточную нейронную сеть

В этом примере показано, как классифицировать текстовые данные с помощью сверточной нейронной сети.

Классифицируйте текстовые данные из памяти Используя глубокое обучение

В этом примере показано, как классифицировать текстовые данные из памяти с нейронной сетью для глубокого обучения с помощью преобразованного datastore.