Предварительно обученная сверточная нейронная сеть Inception-v3
Inception-v3 является сверточной нейронной сетью, которая обучена больше чем на миллионе изображений от базы данных ImageNet [1]. Сеть является 48 слоями глубоко и может классифицировать изображения в 1 000 категорий объектов, таких как клавиатура, мышь, карандаш и многие животные. В результате сеть изучила богатые представления функции для широкого спектра изображений. Сеть имеет входной размер изображений 299 299. Для большего количества предварительно обученных сетей в MATLAB® смотрите Предварительно обученные Глубокие нейронные сети.
Можно использовать classify
классифицировать новые изображения с помощью модели Inception-v3. Выполните шаги, Классифицируют Изображение Используя GoogLeNet и заменяют GoogLeNet на Inception-v3.
Чтобы переобучить сеть на новой задаче классификации, выполните шаги, Обучают Нейронную сеть для глубокого обучения Классифицировать Новые Изображения и загружать Inception-v3 вместо GoogLeNet.
[1] ImageNet. http://www.image-net.org
[2] Szegedy, христианин, Винсент Вэнхук, Сергей Иоффе, Джон Шленс и Збигнев Война. "Заново продумав архитектуру начала для компьютерного зрения". В Продолжениях Конференции по IEEE по Компьютерному зрению и Распознаванию образов, стр 2818-2826. 2016.
DAGNetwork
| alexnet
| densenet201
| googlenet
| inceptionresnetv2
| layerGraph
| plot
| resnet18
| resnet50
| squeezenet
| trainNetwork
| vgg16
| vgg19