globalAveragePooling3dLayer

3-D глобальный средний слой объединения

Описание

Глобальный средний слой объединения выполняет субдискретизацию путем вычисления среднего значения высоты, ширины и размерностей глубины входа.

Создание

Описание

layer = globalAveragePooling3dLayer создает 3-D глобальный средний слой объединения.

пример

layer = globalAveragePooling3dLayer('Name',name) устанавливает дополнительный Name свойство.

Свойства

развернуть все

Имя слоя, заданное как вектор символов или скаляр строки. Чтобы включать слой в график слоя, необходимо задать непустое уникальное имя слоя. Если вы обучаете серийную сеть со слоем и Name установлен в '', затем программное обеспечение автоматически присваивает имя к слою в учебное время.

Типы данных: char | string

Количество входных параметров слоя. Этот слой принимает один вход только.

Типы данных: double

Введите имена слоя. Этот слой принимает один вход только.

Типы данных: cell

Количество выходных параметров слоя. Этот слой имеет один выход только.

Типы данных: double

Выведите имена слоя. Этот слой имеет один выход только.

Типы данных: cell

Примеры

свернуть все

Создайте 3-D глобальный средний слой объединения с именем 'gap1'.

layer = globalAveragePooling3dLayer('Name','gap1')
layer = 
  GlobalAveragePooling3DLayer with properties:

    Name: 'gap1'

Включайте 3-D средний слой объединения в Layer массив.

layers = [ ...
    image3dInputLayer([28 28 28 3])
    convolution3dLayer(5,20)
    reluLayer
    globalAveragePooling3dLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]
layers = 
  7x1 Layer array with layers:

     1   ''   3-D Image Input              28x28x28x3 images with 'zerocenter' normalization
     2   ''   Convolution                  20 5x5x5 convolutions with stride [1  1  1] and padding [0  0  0; 0  0  0]
     3   ''   ReLU                         ReLU
     4   ''   3-D Global Average Pooling   3-D global average pooling
     5   ''   Fully Connected              10 fully connected layer
     6   ''   Softmax                      softmax
     7   ''   Classification Output        crossentropyex

Введенный в R2019b