lteHSTChannel

Высокоскоростной обучают условия распространения канала MIMO

Описание

пример

out = lteHSTChannel(model,in) реализует высокоскоростной обучаются (HST) модель канала MIMO, заданная в TS 36.101 [1] и TS 36.104 [2]. Высокоскоростные обучаются, условие распространения состоит из не исчезающего одного пути модуля амплитудная и нулевая фаза с изменяющимся эффектом Доплера. Столбцы матричного in соответствуйте входным формам волны канала в каждой антенне передачи. Модель канала фильтрует in с характеристиками, заданными в структуре model. Матричный out хранит отфильтрованную форму волны. Каждый столбец out соответствует форме волны в одной из получить антенн.

Примеры

свернуть все

Сгенерируйте систему координат и отфильтруйте, она с высокоскоростным обучает модель канала.

Создайте ссылочную конфигурационную структуру канала, инициализированную к 'R.10'. Сгенерируйте форму волны.

rmc = lteRMCDL('R.10');
[txWaveform,txGrid,info] = lteRMCDLTool(rmc,[1;0;1]);

Инициализируйте конфигурационную структуру канала распространения для высокоскоростного, обучают профиль. Передайте форму волны передачи через канал распространения.

chcfg.NRxAnts = 1;
chcfg.Ds = 100;
chcfg.Dmin = 500;
chcfg.Velocity = 350;
chcfg.DopplerFreq = 5;
chcfg.SamplingRate = info.SamplingRate;
chcfg.InitTime = 0;

rxWaveform = lteHSTChannel(chcfg,txWaveform);

Входные параметры

свернуть все

Высокоскоростной обучают модель канала распространения, заданную как структура. model должен содержать следующие поля.

Поле параметраТребуемый или дополнительныйЗначенияОписание
NRxAntsНеобходимый

Положительное скалярное целое число

Количество получает антенны

DsНеобходимый

Числовой скаляр

Train-to-eNodeB удваивают начальное расстояние в метрах.

Ds/2 начальное расстояние между, обучаются и eNodeB, в метрах

DminНеобходимый

Скалярное значение

eNodeB к расстоянию железнодорожного пути, в метрах

VelocityНеобходимый

Скалярное значение

Обучите скорость в километрах в час

DopplerFreqНеобходимыйСкалярное значение

Максимальная частота Doppler, в Гц.

SamplingRateНеобходимыйСкалярное значение

Уровень выборки входного сигнала, уровень каждой выборки в строках входной матрицы, in.

InitTimeНеобходимыйСкалярное значение

Смещение синхронизации сдвига Doppler, в секундах

NormalizeTxAntsДополнительный

'On' (значение по умолчанию), 'Off'

Передайте нормализацию номера антенны, заданную как:

  • 'On', lteHSTChannel нормирует модель, выведенную 1/sqrt(P), где P является количеством антенн передачи. Нормализация количеством антенн передачи гарантирует, что выходная мощность на получает антенну, незатронуто количеством антенн передачи.

  • 'Off', нормализация не выполняется.

Типы данных: struct

Канал ввел формы волны в антеннах передачи, заданных как числовая матрица. in имеет размер T-by-P, где P является количеством антенн, и T является количеством выборок временного интервала. Эти формы волны отфильтрованы с высокоскоростным, обучают модель канала с эффектом Доплера, как задано в структуре параметра model.

Типы данных: double | single
Поддержка комплексного числа: Да

Выходные аргументы

свернуть все

Фильтрованная форма волны, возвращенная как числовая матрица. Каждый столбец out соответствует форме волны в одной из получить антенн.

Типы данных: double | single
Поддержка комплексного числа: Да

Ссылки

[1] 3GPP TS 36.101. “Развитый Универсальный наземный радио-доступ (к E-UTRA); передача радио оборудования пользователя (UE) и прием”. Проект партнерства третьего поколения; сеть радиодоступа Technical Specification Group. URL: https://www.3gpp.org.

[2] 3GPP TS 36.104. “Развитый Универсальный наземный радио-доступ (к E-UTRA); передача радио базовой станции (BS) и прием”. Проект партнерства третьего поколения; сеть радиодоступа Technical Specification Group. URL: https://www.3gpp.org.

Введенный в R2013b

Для просмотра документации необходимо авторизоваться на сайте