aer2ecef

Преобразуйте локальные сферические координаты к геоцентрическому, сосредоточенному Землей зафиксированный Землей

Описание

пример

[X,Y,Z] = aer2ecef(az,elev,slantRange,lat0,lon0,h0,spheroid) преобразовывает локальные сферические координаты области значений вертикального изменения азимута (AER), заданные az, elev, и slantRange к геоцентрическим Декартовым координатам Сосредоточенного землей зафиксированного землей (ECEF), заданным XY, и Z. Задайте источник локальной системы AER с геодезическими координатами lat0, lon0, и h0. Каждый координатный входной параметр должен совпадать с другими в размере или быть скаляром. Задайте spheroid как ссылочный сфероид для геодезических координат.

[___] = aer2ecef(___,angleUnit) задает модули для азимута, вертикального изменения, широты и долготы. Задайте angleUnit как 'degrees' (значение по умолчанию) или 'radians'.

Примеры

свернуть все

Найдите координаты ECEF спутника, с помощью координат AER спутника относительно геодезических координат спутниковой тарелки.

Во-первых, задайте ссылочный сфероид как WGS84 с единицами длины, измеренными в километрах. Для получения дополнительной информации о WGS84, смотрите Ссылочные Сфероиды. Модули для эллипсоидальной высоты, наклонной области значений и координат ECEF должны совпадать с модулями, заданными LengthUnit свойство ссылочного сфероида.

wgs84 = wgs84Ellipsoid('kilometers');

Задайте геодезические координаты локального источника. В этом примере локальный источник является спутниковой тарелкой. Задайте h0 как эллипсоидальная высота в километрах.

lat0 = 42.3221;
lon0 = -71.3576;
h0 = 0.0847;

Задайте координаты AER интересного места. В этом примере интересное место является спутником. Укажите наклонный диапазон в километрах.

az = 24.8012;
elev = 14.6185;
slantRange = 36271.6327;

Затем вычислите координаты ECEF спутника. В этом примере результаты отображаются в экспоненциальном представлении.

[x,y,z] = aer2ecef(az,elev,slantRange,lat0,lon0,h0,wgs84)
x = 1.0766e+04
y = 1.4144e+04
z = 3.3992e+04

Инвертируйте преобразование с помощью ecef2aer функция. В этом примере, slantRange отображения в экспоненциальном представлении.

[az,elev,slantRange] = ecef2aer(x,y,z,lat0,lon0,h0,wgs84)
az = 24.8012
elev = 14.6185
slantRange = 3.6272e+04

Входные параметры

свернуть все

Углы азимута одной или нескольких точек в локальной системе AER, заданной как скаляр, вектор, матрица или массив N-D. Азимуты измеряются по часовой стрелке от севера. Задайте значения в градусах. Чтобы использовать значения в радианах, задайте angleUnit аргумент как 'radians'.

Типы данных: single | double

Углы вертикального изменения одной или нескольких точек в локальной системе AER, заданной как скаляр, вектор, матрица или массив N-D. Задайте вертикальные изменения относительно плоскости, которая перпендикулярна нормальной из сфероидальной поверхности. Если локальный источник находится на поверхности сфероида (h0 = 0), затем плоскость является касательной к сфероиду.

Задайте значения в градусах. Чтобы использовать значения в радианах, задайте angleUnit аргумент как 'radians'.

Типы данных: single | double

Расстояния от локального источника, заданного как скаляр, вектор, матрица или массив N-D. Задайте каждое расстояние как вдоль прямой, 3-D, Декартовой линии. Задайте значения в модулях, которые совпадают с LengthUnit свойство spheroid аргумент. Например, единица длины по умолчанию для ссылочного эллипсоида создается wgs84Ellipsoid 'meter'.

Типы данных: single | double

Геодезическая широта локального источника, заданного как скаляр, вектор, матрица или массив N-D. Локальный источник может относиться к одной точке или серии точек (например, движущаяся платформа). Задайте значения в градусах. Чтобы использовать значения в радианах, задайте angleUnit аргумент как 'radians'.

Типы данных: single | double

Геодезическая долгота локального источника, заданного как скаляр, вектор, матрица или массив N-D. Локальный источник может относиться к одной точке или серии точек (например, движущаяся платформа). Задайте значения в градусах. Чтобы использовать значения в радианах, задайте angleUnit аргумент как 'radians'.

Типы данных: single | double

Эллипсоидальная высота локального источника, заданного как скаляр, вектор, матрица или массив N-D. Локальный источник может относиться к одной точке или серии точек (например, движущаяся платформа). Задайте значения в модулях, которые совпадают с LengthUnit свойство spheroid объект. Например, единица длины по умолчанию для ссылочного эллипсоида создается wgs84Ellipsoid 'meter'.

Типы данных: single | double

Ссылочный сфероид, заданный как referenceEllipsoid объект, oblateSpheroid объект или referenceSphere объект. Сфероид ссылки термина используется синонимично со ссылочным эллипсоидом. Чтобы создать ссылочный сфероид, используйте функцию создания в объекте. Чтобы задать ссылочный эллипсоид для WGS84, используйте wgs84Ellipsoid функция.

Для получения дополнительной информации о ссылочных сфероидах, смотрите Ссылочные Сфероиды.

Пример: spheroid = referenceEllipsoid('GRS 80');

Модули углов, заданных как 'degrees' (значение по умолчанию) или 'radians'.

Типы данных: char | string

Выходные аргументы

свернуть все

ECEF x - координаты одной или нескольких точек в геоцентрической системе ECEF, возвращенной как скаляр, вектор, матрица или массив N-D. Модули заданы LengthUnit свойство spheroid аргумент. Например, единица длины по умолчанию для ссылочного эллипсоида создается wgs84Ellipsoid 'meter'.

ECEF y - координаты одной или нескольких точек в геоцентрической системе ECEF, возвращенной как скаляр, вектор, матрица или массив N-D. Модули заданы LengthUnit свойство spheroid аргумент. Например, единица длины по умолчанию для ссылочного эллипсоида создается wgs84Ellipsoid 'meter'.

ECEF z - координаты одной или нескольких точек в геоцентрической системе ECEF, возвращенной как скаляр, вектор, матрица или массив N-D. Модули заданы LengthUnit свойство spheroid аргумент. Например, единица длины по умолчанию для ссылочного эллипсоида создается wgs84Ellipsoid 'meter'.

Представленный в R2012b