Создание КИХ-фильтра, основанного на частотной дискретизации
возвращает b = fir2(n,f,m)nКИХ th-порядка фильтрует с характеристиками величины частоты, заданными в векторах f и m. Функция линейно интерполирует желаемую частотную характеристику на плотную сетку и затем использует обратное преобразование Фурье и Окно Хэмминга, чтобы получить коэффициенты фильтра.
fir2 выборка частоты использования, чтобы спроектировать фильтры. Функция интерполирует желаемую частотную характеристику линейно на плотную, равномерно расположенную с интервалами сетку длины npt. fir2 также создает области lap точки вокруг повторных значений f обеспечить крутые но плавные переходы. Чтобы получить коэффициенты фильтра, функция применяет обратное быстрое преобразование Фурье к сетке и умножается window.
[1] Mitra, цифровая обработка сигналов Сэнджита К.: компьютерный подход. Нью-Йорк: McGraw-Hill, 1998.
[2] Джексон, L. B. Цифровые фильтры и обработка сигналов. 3-й Эд. Бостон: Kluwer академические издатели, 1996.
butter | cheby1 | cheby2 | designfilt | ellip | filter | fir1 | firpm | hamming | maxflat | yulewalk