oobLoss

Ошибка классификации из сумки

Синтаксис

L = oobloss(ens)
L = oobloss(ens,Name,Value)

Описание

L = oobloss(ens) возвращает ошибку классификации для ens вычисленный для данных из сумки.

L = oobloss(ens,Name,Value) вычисляет ошибку с дополнительными опциями, заданными одним или несколькими Name,Value парные аргументы. Можно задать несколько аргументов пары "имя-значение" в любом порядке как Name1,Value1,…,NameN,ValueN.

Входные параметры

ens

Классификация уволила ансамбль, созданный с fitcensemble.

Аргументы в виде пар имя-значение

Задайте дополнительные разделенные запятой пары Name,Value аргументы. Name имя аргумента и Value соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

'learners'

Индексы слабых учеников в ансамбле в пределах от 1 к NumTrained. oobLoss использование только эти ученики для вычисления потери.

Значение по умолчанию: 1:NumTrained

'lossfun'

Функция потерь, заданная как разделенная запятой пара, состоящая из 'LossFun' и встроенное имя функции потерь или указатель на функцию.

  • В следующей таблице перечислены доступные функции потерь. Задайте тот с помощью его соответствующего вектора символов или представьте скаляр в виде строки.

    ЗначениеОписание
    'binodeviance'Биномиальное отклонение
    'classiferror'Ошибка классификации
    'exponential'Экспоненциал
    'hinge'Стержень
    'logit'Логистический
    'mincost'Минимальный ожидал стоимость misclassification (для баллов классификации, которые являются апостериорными вероятностями),
    'quadratic'Квадратичный

    'mincost' подходит для баллов классификации, которые являются апостериорными вероятностями. Уволенные ансамбли возвращают апостериорные вероятности как баллы классификации по умолчанию.

  • Задайте свою собственную функцию с помощью обозначения указателя на функцию.

    Предположим тот n будьте количеством наблюдений в X и K будьте количеством отличных классов (numel(ens.ClassNames), ens входная модель). Ваша функция должна иметь эту подпись

    lossvalue = lossfun(C,S,W,Cost)
    где:

    • Выходной аргумент lossvalue скаляр.

    • Вы выбираете имя функции (lossfun).

    • C n- K логическая матрица со строками, указывающими, которые классифицируют соответствующее наблюдение, принадлежит. Порядок следования столбцов соответствует порядку класса в ens.ClassNames.

      Создайте C установкой C(p,q) = 1 если наблюдение p находится в классе q, для каждой строки. Установите все другие элементы строки p к 0.

    • S n- K числовая матрица баллов классификации. Порядок следования столбцов соответствует порядку класса в ens.ClassNamesS матрица баллов классификации, похожих на выход predict.

    • W n- 1 числовой вектор весов наблюдения. Если вы передаете W, программное обеспечение нормирует их, чтобы суммировать к 1.

    • Cost K-by-K числовая матрица затрат misclassification. Например, Cost = ones(K) - eye(K) задает стоимость 0 для правильной классификации и 1 для misclassification.

    Задайте свое использование функции 'LossFun', @lossfun.

Для получения дополнительной информации о функциях потерь смотрите Потерю Классификации.

Значение по умолчанию: 'classiferror'

'mode'

Вектор символов или скаляр строки представление значения выхода L:

  • 'ensemble' L скалярное значение, потеря для целого ансамбля.

  • 'individual' L вектор с одним элементом на обученного ученика.

  • 'cumulative' L вектор в который элемент J получен при помощи учеников 1:J из списка входов учеников.

Значение по умолчанию: 'ensemble'

Выходные аргументы

L

Потеря классификации наблюдений из сумки, скаляра. L может быть вектор или может представлять различное количество, в зависимости от настроек значения имени.

Примеры

развернуть все

Загрузите ирисовый набор данных Фишера.

load fisheriris

Вырастите мешок 100 деревьев классификации.

ens = fitcensemble(meas,species,'Method','Bag');

Оцените ошибку классификации из сумки.

L = oobLoss(ens)
L = 0.0467

Больше о

развернуть все

Смотрите также

| | |

Для просмотра документации необходимо авторизоваться на сайте