ClassificationKernel

Гауссова модель классификации ядер использование случайного расширения функции

Описание

ClassificationKernel обученный объект модели для бинарной Гауссовой модели классификации ядер использование случайного расширения функции. ClassificationKernel более практично для больших применений данных, которые имеют большие наборы обучающих данных, но могут также быть применены к меньшим наборам данных, которые умещаются в памяти.

В отличие от других моделей классификации, и для экономичного использования памяти, ClassificationKernel объекты модели не хранят обучающие данные. Однако они действительно хранят информацию, такую как количество размерностей расширенного пробела, масштабного коэффициента ядра, вероятностей предшествующего класса и силы регуляризации.

Можно использовать, обучил ClassificationKernel модели, чтобы продолжить обучение с помощью обучающих данных и предсказать метки или музыку классификации к новым данным. Для получения дополнительной информации смотрите resume и predict.

Создание

Создайте ClassificationKernel объект с помощью fitckernel функция. Эти функциональные данные о картах в низком мерном пространстве в высокое мерное пространство, затем подбирает линейную модель в высоком мерном пространстве путем минимизации упорядоченной целевой функции. Линейная модель в высоком мерном пространстве эквивалентна модели с Гауссовым ядром в низком мерном пространстве. Доступные линейные модели классификации включают упорядоченную машину опорных векторов (SVM) и модели логистической регрессии.

Свойства

развернуть все

Свойства классификации ядер

Линейный тип модели классификации, заданный как 'logistic' или 'svm'.

В следующей таблице, f(x)=T(x)β+b.

  • x является наблюдением (вектор-строка) от переменных предикторов p.

  • T(·) преобразование наблюдения (вектор-строка) для расширения функции. T (x) сопоставляет x в p к высокому мерному пространству (m).

  • β является вектором коэффициентов m.

  • b является скалярным смещением.

ЗначениеАлгоритмФункция потерьFittedLoss Значение
'logistic'Логистическая регрессия(Логистическое) отклонение: [y,f(x)]=журнал{1+exp[yf(x)]}'logit'
'svm'Машина опорных векторовСтержень: [y,f(x)]=max [0,1yf(x)]'hinge'

Количество размерностей расширенного пробела, заданного как положительное целое число.

Типы данных: single | double

Масштабный коэффициент ядра, заданный как положительная скалярная величина.

Типы данных: char | single | double

Ограничение поля, заданное как положительная скалярная величина.

Типы данных: double | single

Сила срока регуляризации, заданная как неотрицательный скаляр.

Типы данных: single | double

Функция потерь раньше подбирала линейную модель, заданную как 'hinge' или 'logit'.

ЗначениеАлгоритмФункция потерьLearner Значение
'hinge'Машина опорных векторовСтержень: [y,f(x)]=max [0,1yf(x)]'svm'
'logit'Логистическая регрессия(Логистическое) отклонение: [y,f(x)]=журнал{1+exp[yf(x)]}'logistic'

Тип штрафа сложности, который всегда является 'ridge (L2)'.

Программное обеспечение составляет целевую функцию для минимизации от суммы средней функции потерь (см. FittedLoss) и срок регуляризации, гребень (L 2) штраф.

Гребень (L 2) штраф

λ2j=1pβj2

где λ задает силу срока регуляризации (см. Lambda). Программное обеспечение исключает срок смещения (β 0) от штрафа регуляризации.

Другие свойства классификации

Индексы категориальных предикторов, значение которых всегда пусто ([]) потому что ClassificationKernel модель не поддерживает категориальные предикторы.

Уникальные метки класса используются в обучении, заданном как категориальное или символьный массив, логический или числовой вектор или массив ячеек из символьных векторов. ClassNames имеет совпадающий тип данных, когда класс маркирует Y. (Программное обеспечение обрабатывает строковые массивы как массивы ячеек из символьных векторов.) ClassNames также определяет порядок класса.

Типы данных: categorical | char | logical | single | double | cell

Это свойство доступно только для чтения.

Затраты Misclassification, заданные как квадратная числовая матрица. Cost имеет строки и столбцы K, где K является количеством классов.

Стойте (iJ) стоимость классификации точки в класс j если его истинным классом является i. Порядок строк и столбцов Cost соответствует порядку классов в ClassNames.

Типы данных: double

Параметры использовали в обучении ClassificationKernel модель, заданная как структура.

Доступ к полям ModelParameters использование записи через точку. Например, получите доступ к относительному допуску на линейных коэффициентах и сроке смещения при помощи Mdl.ModelParameters.BetaTolerance.

Типы данных: struct

Предиктор называет в порядке их внешнего вида в данных о предикторе X, заданный как массив ячеек из символьных векторов. Длина PredictorNames равно количеству столбцов в X.

Типы данных: cell

Расширенные имена предиктора, заданные как массив ячеек из символьных векторов.

Поскольку ClassificationKernel модель не поддерживает категориальные предикторы, ExpandedPredictorNames и PredictorNames равны.

Типы данных: cell

Это свойство доступно только для чтения.

Предшествующие вероятности класса, заданные как числовой вектор. Prior имеет столько же элементов сколько классы в ClassNames, и порядок элементов соответствует элементам ClassNames.

Типы данных: double

Выиграйте функцию преобразования, чтобы примениться к предсказанным баллам, определенному функцией имени или указателю на функцию.

Для моделей классификации ядер и перед преобразованием счета, предсказанным счетом классификации к наблюдению x (вектор-строка) f(x)=T(x)β+b.

  • T(·) преобразование наблюдения для расширения функции.

  • β является предполагаемым вектор-столбцом коэффициентов.

  • b является предполагаемым скалярным смещением.

Чтобы изменить преобразование счета функционируют к function, например, используйте запись через точку.

  • Для встроенной функции введите этот код и замените function со значением из таблицы.

    Mdl.ScoreTransform = 'function';

    ЗначениеОписание
    'doublelogit'1/(1 + e –2x)
    'invlogit'журнал (x / (1 – x))
    'ismax'Устанавливает счет к классу с самым большим счетом к 1, и устанавливает музыку ко всем другим классам к 0
    'logit'1/(1 + e x)
    'none' или 'identity'x (никакое преобразование)
    'sign'– 1 для x <0
    0 для x = 0
    1 для x> 0
    'symmetric'2x – 1
    'symmetricismax'Устанавливает счет к классу с самым большим счетом к 1, и устанавливает музыку ко всем другим классам к –1
    'symmetriclogit'2/(1 + e x) – 1

  • Для функции MATLAB® или функции, которую вы задаете, вводят ее указатель на функцию.

    Mdl.ScoreTransform = @function;

    function должен принять матрицу исходной музыки к каждому классу, и затем возвратить матричное представление одного размера преобразованной музыки к каждому классу.

Типы данных: char | function_handle

Имя переменной отклика, заданное как вектор символов.

Типы данных: char

Функции объекта

edgeРебро классификации для Гауссовой модели классификации ядер
lossПотеря классификации для Гауссовой модели классификации ядер
marginПоля классификации для Гауссовой модели классификации ядер
predictПредскажите метки для Гауссовой модели классификации ядер
resumeВозобновите обучение Гауссовой модели классификации ядер

Примеры

свернуть все

Обучите бинарную модель классификации ядер, использующую SVM.

Загрузите ionosphere набор данных. Этот набор данных имеет 34 предиктора, и 351 бинарный ответ для радара возвращается, любой плохо ('b') или хороший ('g').

load ionosphere
[n,p] = size(X)
n = 351
p = 34
resp = unique(Y)
resp = 2x1 cell array
    {'b'}
    {'g'}

Обучите бинарную модель классификации ядер, которая идентифицирует, плох ли радарный возврат ('b') или хороший ('g'). Извлеките подходящие сводные данные, чтобы определить, как хорошо алгоритм оптимизации подбирает модель к данным.

rng('default') % For reproducibility
[Mdl,FitInfo] = fitckernel(X,Y)
Mdl = 
  ClassificationKernel
              ResponseName: 'Y'
                ClassNames: {'b'  'g'}
                   Learner: 'svm'
    NumExpansionDimensions: 2048
               KernelScale: 1
                    Lambda: 0.0028
             BoxConstraint: 1


  Properties, Methods

FitInfo = struct with fields:
                  Solver: 'LBFGS-fast'
            LossFunction: 'hinge'
                  Lambda: 0.0028
           BetaTolerance: 1.0000e-04
       GradientTolerance: 1.0000e-06
          ObjectiveValue: 0.2604
       GradientMagnitude: 0.0028
    RelativeChangeInBeta: 8.2512e-05
                 FitTime: 0.4879
                 History: []

Mdl ClassificationKernel модель. Чтобы смотреть ошибку классификации в выборке, можно передать Mdl и обучающие данные или новые данные к loss функция. Или, можно передать Mdl и новые данные о предикторе к predict функция, чтобы предсказать класс помечает для новых наблюдений. Можно также передать Mdl и обучающие данные к resume функция, чтобы продолжить обучение.

FitInfo массив структур, содержащий информацию об оптимизации. Используйте FitInfo определить, являются ли измерения завершения оптимизации удовлетворительными.

Для лучшей точности можно увеличить максимальное число итераций оптимизации ('IterationLimit') и уменьшите значения допуска ('BetaTolerance' и 'GradientTolerance') при помощи аргументов пары "имя-значение". Выполнение так может улучшить меры как ObjectiveValue и RelativeChangeInBeta в FitInfo. Можно также оптимизировать параметры модели при помощи 'OptimizeHyperparameters' аргумент пары "имя-значение".

Загрузите ionosphere набор данных. Этот набор данных имеет 34 предиктора, и 351 бинарный ответ для радара возвращается, любой плохо ('b') или хороший ('g').

load ionosphere

Разделите набор данных в наборы обучающих данных и наборы тестов. Задайте 20%-ю выборку затяжки для набора тестов.

rng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',0.20);
trainingInds = training(Partition); % Indices for the training set
XTrain = X(trainingInds,:);
YTrain = Y(trainingInds);
testInds = test(Partition); % Indices for the test set
XTest = X(testInds,:);
YTest = Y(testInds);

Обучите бинарную модель классификации ядер, которая идентифицирует, плох ли радарный возврат ('b') или хороший ('g').

Mdl = fitckernel(XTrain,YTrain,'IterationLimit',5,'Verbose',1);
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |            0 |  1.000000e+00 |  0.000000e+00 |  2.811388e-01 |                |             0 |
|  LBFGS |      1 |            1 |  7.585395e-01 |  4.000000e+00 |  3.594306e-01 |   1.000000e+00 |          2048 |
|  LBFGS |      1 |            2 |  7.160994e-01 |  1.000000e+00 |  2.028470e-01 |   6.923988e-01 |          2048 |
|  LBFGS |      1 |            3 |  6.825272e-01 |  1.000000e+00 |  2.846975e-02 |   2.388909e-01 |          2048 |
|  LBFGS |      1 |            4 |  6.699435e-01 |  1.000000e+00 |  1.779359e-02 |   1.325304e-01 |          2048 |
|  LBFGS |      1 |            5 |  6.535619e-01 |  1.000000e+00 |  2.669039e-01 |   4.112952e-01 |          2048 |
|=================================================================================================================|

Mdl ClassificationKernel модель.

Предскажите метки набора тестов, создайте матрицу беспорядка для набора тестов и оцените ошибку классификации для набора тестов.

label = predict(Mdl,XTest);
ConfusionTest = confusionchart(YTest,label);

L = loss(Mdl,XTest,YTest)
L = 0.3594

Mdl неправильно классифицирует весь плохой радар, возвращается как хорошая прибыль.

Продолжите обучение при помощи resume. Эта функция продолжает обучение с теми же опциями, используемыми в учебном Mdl.

UpdatedMdl = resume(Mdl,XTrain,YTrain);
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |            0 |  6.535619e-01 |  0.000000e+00 |  2.669039e-01 |                |          2048 |
|  LBFGS |      1 |            1 |  6.132547e-01 |  1.000000e+00 |  6.355537e-03 |   1.522092e-01 |          2048 |
|  LBFGS |      1 |            2 |  5.938316e-01 |  4.000000e+00 |  3.202847e-02 |   1.498036e-01 |          2048 |
|  LBFGS |      1 |            3 |  4.169274e-01 |  1.000000e+00 |  1.530249e-01 |   7.234253e-01 |          2048 |
|  LBFGS |      1 |            4 |  3.679212e-01 |  5.000000e-01 |  2.740214e-01 |   2.495886e-01 |          2048 |
|  LBFGS |      1 |            5 |  3.332261e-01 |  1.000000e+00 |  1.423488e-02 |   9.558680e-02 |          2048 |
|  LBFGS |      1 |            6 |  3.235335e-01 |  1.000000e+00 |  7.117438e-03 |   7.137260e-02 |          2048 |
|  LBFGS |      1 |            7 |  3.112331e-01 |  1.000000e+00 |  6.049822e-02 |   1.252157e-01 |          2048 |
|  LBFGS |      1 |            8 |  2.972144e-01 |  1.000000e+00 |  7.117438e-03 |   5.796240e-02 |          2048 |
|  LBFGS |      1 |            9 |  2.837450e-01 |  1.000000e+00 |  8.185053e-02 |   1.484733e-01 |          2048 |
|  LBFGS |      1 |           10 |  2.797642e-01 |  1.000000e+00 |  3.558719e-02 |   5.856842e-02 |          2048 |
|  LBFGS |      1 |           11 |  2.771280e-01 |  1.000000e+00 |  2.846975e-02 |   2.349433e-02 |          2048 |
|  LBFGS |      1 |           12 |  2.741570e-01 |  1.000000e+00 |  3.914591e-02 |   3.113194e-02 |          2048 |
|  LBFGS |      1 |           13 |  2.725701e-01 |  5.000000e-01 |  1.067616e-01 |   8.729821e-02 |          2048 |
|  LBFGS |      1 |           14 |  2.667147e-01 |  1.000000e+00 |  3.914591e-02 |   3.491723e-02 |          2048 |
|  LBFGS |      1 |           15 |  2.621152e-01 |  1.000000e+00 |  7.117438e-03 |   5.104726e-02 |          2048 |
|  LBFGS |      1 |           16 |  2.601652e-01 |  1.000000e+00 |  3.558719e-02 |   3.764904e-02 |          2048 |
|  LBFGS |      1 |           17 |  2.589052e-01 |  1.000000e+00 |  3.202847e-02 |   3.655744e-02 |          2048 |
|  LBFGS |      1 |           18 |  2.583185e-01 |  1.000000e+00 |  7.117438e-03 |   6.490571e-02 |          2048 |
|  LBFGS |      1 |           19 |  2.556482e-01 |  1.000000e+00 |  9.252669e-02 |   4.601390e-02 |          2048 |
|  LBFGS |      1 |           20 |  2.542643e-01 |  1.000000e+00 |  7.117438e-02 |   4.141838e-02 |          2048 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |           21 |  2.532117e-01 |  1.000000e+00 |  1.067616e-02 |   1.661720e-02 |          2048 |
|  LBFGS |      1 |           22 |  2.529890e-01 |  1.000000e+00 |  2.135231e-02 |   1.231678e-02 |          2048 |
|  LBFGS |      1 |           23 |  2.523232e-01 |  1.000000e+00 |  3.202847e-02 |   1.958586e-02 |          2048 |
|  LBFGS |      1 |           24 |  2.506736e-01 |  1.000000e+00 |  1.779359e-02 |   2.474613e-02 |          2048 |
|  LBFGS |      1 |           25 |  2.501995e-01 |  1.000000e+00 |  1.779359e-02 |   2.514352e-02 |          2048 |
|  LBFGS |      1 |           26 |  2.488242e-01 |  1.000000e+00 |  3.558719e-03 |   1.531810e-02 |          2048 |
|  LBFGS |      1 |           27 |  2.485295e-01 |  5.000000e-01 |  3.202847e-02 |   1.229760e-02 |          2048 |
|  LBFGS |      1 |           28 |  2.482244e-01 |  1.000000e+00 |  4.270463e-02 |   8.970983e-03 |          2048 |
|  LBFGS |      1 |           29 |  2.479714e-01 |  1.000000e+00 |  3.558719e-03 |   7.393900e-03 |          2048 |
|  LBFGS |      1 |           30 |  2.477316e-01 |  1.000000e+00 |  3.202847e-02 |   3.268087e-03 |          2048 |
|  LBFGS |      1 |           31 |  2.476178e-01 |  2.500000e-01 |  3.202847e-02 |   5.445890e-03 |          2048 |
|  LBFGS |      1 |           32 |  2.474874e-01 |  1.000000e+00 |  1.779359e-02 |   3.535903e-03 |          2048 |
|  LBFGS |      1 |           33 |  2.473980e-01 |  1.000000e+00 |  7.117438e-03 |   2.821725e-03 |          2048 |
|  LBFGS |      1 |           34 |  2.472935e-01 |  1.000000e+00 |  3.558719e-03 |   2.699880e-03 |          2048 |
|  LBFGS |      1 |           35 |  2.471418e-01 |  1.000000e+00 |  3.558719e-03 |   1.242523e-02 |          2048 |
|  LBFGS |      1 |           36 |  2.469862e-01 |  1.000000e+00 |  2.846975e-02 |   7.895605e-03 |          2048 |
|  LBFGS |      1 |           37 |  2.469598e-01 |  1.000000e+00 |  2.135231e-02 |   6.657676e-03 |          2048 |
|  LBFGS |      1 |           38 |  2.466941e-01 |  1.000000e+00 |  3.558719e-02 |   4.654690e-03 |          2048 |
|  LBFGS |      1 |           39 |  2.466660e-01 |  5.000000e-01 |  1.423488e-02 |   2.885769e-03 |          2048 |
|  LBFGS |      1 |           40 |  2.465605e-01 |  1.000000e+00 |  3.558719e-03 |   4.562565e-03 |          2048 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |           41 |  2.465362e-01 |  1.000000e+00 |  1.423488e-02 |   5.652180e-03 |          2048 |
|  LBFGS |      1 |           42 |  2.463528e-01 |  1.000000e+00 |  3.558719e-03 |   2.389759e-03 |          2048 |
|  LBFGS |      1 |           43 |  2.463207e-01 |  1.000000e+00 |  1.511170e-03 |   3.738286e-03 |          2048 |
|  LBFGS |      1 |           44 |  2.462585e-01 |  5.000000e-01 |  7.117438e-02 |   2.321693e-03 |          2048 |
|  LBFGS |      1 |           45 |  2.461742e-01 |  1.000000e+00 |  7.117438e-03 |   2.599725e-03 |          2048 |
|  LBFGS |      1 |           46 |  2.461434e-01 |  1.000000e+00 |  3.202847e-02 |   3.186923e-03 |          2048 |
|  LBFGS |      1 |           47 |  2.461115e-01 |  1.000000e+00 |  7.117438e-03 |   1.530711e-03 |          2048 |
|  LBFGS |      1 |           48 |  2.460814e-01 |  1.000000e+00 |  1.067616e-02 |   1.811714e-03 |          2048 |
|  LBFGS |      1 |           49 |  2.460533e-01 |  5.000000e-01 |  1.423488e-02 |   1.012252e-03 |          2048 |
|  LBFGS |      1 |           50 |  2.460111e-01 |  1.000000e+00 |  1.423488e-02 |   4.166762e-03 |          2048 |
|  LBFGS |      1 |           51 |  2.459414e-01 |  1.000000e+00 |  1.067616e-02 |   3.271946e-03 |          2048 |
|  LBFGS |      1 |           52 |  2.458809e-01 |  1.000000e+00 |  1.423488e-02 |   1.846440e-03 |          2048 |
|  LBFGS |      1 |           53 |  2.458479e-01 |  1.000000e+00 |  1.067616e-02 |   1.180871e-03 |          2048 |
|  LBFGS |      1 |           54 |  2.458146e-01 |  1.000000e+00 |  1.455008e-03 |   1.422954e-03 |          2048 |
|  LBFGS |      1 |           55 |  2.457878e-01 |  1.000000e+00 |  7.117438e-03 |   1.880892e-03 |          2048 |
|  LBFGS |      1 |           56 |  2.457519e-01 |  1.000000e+00 |  2.491103e-02 |   1.074764e-03 |          2048 |
|  LBFGS |      1 |           57 |  2.457420e-01 |  1.000000e+00 |  7.473310e-02 |   9.511878e-04 |          2048 |
|  LBFGS |      1 |           58 |  2.457212e-01 |  1.000000e+00 |  3.558719e-03 |   3.718564e-04 |          2048 |
|  LBFGS |      1 |           59 |  2.457089e-01 |  1.000000e+00 |  4.270463e-02 |   6.237270e-04 |          2048 |
|  LBFGS |      1 |           60 |  2.457047e-01 |  5.000000e-01 |  1.423488e-02 |   3.647573e-04 |          2048 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |           61 |  2.456991e-01 |  1.000000e+00 |  1.423488e-02 |   5.666884e-04 |          2048 |
|  LBFGS |      1 |           62 |  2.456898e-01 |  1.000000e+00 |  1.779359e-02 |   4.697056e-04 |          2048 |
|  LBFGS |      1 |           63 |  2.456792e-01 |  1.000000e+00 |  1.779359e-02 |   5.984927e-04 |          2048 |
|  LBFGS |      1 |           64 |  2.456603e-01 |  1.000000e+00 |  1.403782e-03 |   5.414985e-04 |          2048 |
|  LBFGS |      1 |           65 |  2.456482e-01 |  1.000000e+00 |  3.558719e-03 |   6.506293e-04 |          2048 |
|  LBFGS |      1 |           66 |  2.456358e-01 |  1.000000e+00 |  1.476262e-03 |   1.284139e-03 |          2048 |
|  LBFGS |      1 |           67 |  2.456124e-01 |  1.000000e+00 |  3.558719e-03 |   8.636596e-04 |          2048 |
|  LBFGS |      1 |           68 |  2.455980e-01 |  1.000000e+00 |  1.067616e-02 |   9.861527e-04 |          2048 |
|  LBFGS |      1 |           69 |  2.455780e-01 |  1.000000e+00 |  1.067616e-02 |   5.102487e-04 |          2048 |
|  LBFGS |      1 |           70 |  2.455633e-01 |  1.000000e+00 |  3.558719e-03 |   1.228077e-03 |          2048 |
|  LBFGS |      1 |           71 |  2.455449e-01 |  1.000000e+00 |  1.423488e-02 |   7.864590e-04 |          2048 |
|  LBFGS |      1 |           72 |  2.455261e-01 |  1.000000e+00 |  3.558719e-02 |   1.090815e-03 |          2048 |
|  LBFGS |      1 |           73 |  2.455142e-01 |  1.000000e+00 |  1.067616e-02 |   1.701506e-03 |          2048 |
|  LBFGS |      1 |           74 |  2.455075e-01 |  1.000000e+00 |  1.779359e-02 |   1.504577e-03 |          2048 |
|  LBFGS |      1 |           75 |  2.455008e-01 |  1.000000e+00 |  3.914591e-02 |   1.144021e-03 |          2048 |
|  LBFGS |      1 |           76 |  2.454943e-01 |  1.000000e+00 |  2.491103e-02 |   3.015254e-04 |          2048 |
|  LBFGS |      1 |           77 |  2.454918e-01 |  5.000000e-01 |  3.202847e-02 |   9.837523e-04 |          2048 |
|  LBFGS |      1 |           78 |  2.454870e-01 |  1.000000e+00 |  1.779359e-02 |   4.328953e-04 |          2048 |
|  LBFGS |      1 |           79 |  2.454865e-01 |  5.000000e-01 |  3.558719e-03 |   7.126815e-04 |          2048 |
|  LBFGS |      1 |           80 |  2.454775e-01 |  1.000000e+00 |  5.693950e-02 |   8.992562e-04 |          2048 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |           81 |  2.454686e-01 |  1.000000e+00 |  1.183730e-03 |   1.590246e-04 |          2048 |
|  LBFGS |      1 |           82 |  2.454612e-01 |  1.000000e+00 |  2.135231e-02 |   1.389570e-04 |          2048 |
|  LBFGS |      1 |           83 |  2.454506e-01 |  1.000000e+00 |  3.558719e-03 |   6.162089e-04 |          2048 |
|  LBFGS |      1 |           84 |  2.454436e-01 |  1.000000e+00 |  1.423488e-02 |   1.877414e-03 |          2048 |
|  LBFGS |      1 |           85 |  2.454378e-01 |  1.000000e+00 |  1.423488e-02 |   3.370852e-04 |          2048 |
|  LBFGS |      1 |           86 |  2.454249e-01 |  1.000000e+00 |  1.423488e-02 |   8.133615e-04 |          2048 |
|  LBFGS |      1 |           87 |  2.454101e-01 |  1.000000e+00 |  1.067616e-02 |   3.872088e-04 |          2048 |
|  LBFGS |      1 |           88 |  2.453963e-01 |  1.000000e+00 |  1.779359e-02 |   5.670260e-04 |          2048 |
|  LBFGS |      1 |           89 |  2.453866e-01 |  1.000000e+00 |  1.067616e-02 |   1.444984e-03 |          2048 |
|  LBFGS |      1 |           90 |  2.453821e-01 |  1.000000e+00 |  7.117438e-03 |   2.457270e-03 |          2048 |
|  LBFGS |      1 |           91 |  2.453790e-01 |  5.000000e-01 |  6.761566e-02 |   8.228766e-04 |          2048 |
|  LBFGS |      1 |           92 |  2.453603e-01 |  1.000000e+00 |  2.135231e-02 |   1.084233e-03 |          2048 |
|  LBFGS |      1 |           93 |  2.453540e-01 |  1.000000e+00 |  2.135231e-02 |   2.060005e-04 |          2048 |
|  LBFGS |      1 |           94 |  2.453482e-01 |  1.000000e+00 |  1.779359e-02 |   1.560883e-04 |          2048 |
|  LBFGS |      1 |           95 |  2.453461e-01 |  1.000000e+00 |  1.779359e-02 |   1.614693e-03 |          2048 |
|  LBFGS |      1 |           96 |  2.453371e-01 |  1.000000e+00 |  3.558719e-02 |   2.145835e-04 |          2048 |
|  LBFGS |      1 |           97 |  2.453305e-01 |  1.000000e+00 |  4.270463e-02 |   7.602088e-04 |          2048 |
|  LBFGS |      1 |           98 |  2.453283e-01 |  2.500000e-01 |  2.135231e-02 |   3.422253e-04 |          2048 |
|  LBFGS |      1 |           99 |  2.453246e-01 |  1.000000e+00 |  3.558719e-03 |   3.872561e-04 |          2048 |
|  LBFGS |      1 |          100 |  2.453214e-01 |  1.000000e+00 |  3.202847e-02 |   1.732237e-04 |          2048 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |          101 |  2.453168e-01 |  1.000000e+00 |  1.067616e-02 |   3.065286e-04 |          2048 |
|  LBFGS |      1 |          102 |  2.453155e-01 |  5.000000e-01 |  4.626335e-02 |   3.402368e-04 |          2048 |
|  LBFGS |      1 |          103 |  2.453136e-01 |  1.000000e+00 |  1.779359e-02 |   2.215029e-04 |          2048 |
|  LBFGS |      1 |          104 |  2.453119e-01 |  1.000000e+00 |  3.202847e-02 |   4.142355e-04 |          2048 |
|  LBFGS |      1 |          105 |  2.453093e-01 |  1.000000e+00 |  1.423488e-02 |   2.186007e-04 |          2048 |
|  LBFGS |      1 |          106 |  2.453090e-01 |  1.000000e+00 |  2.846975e-02 |   1.338602e-03 |          2048 |
|  LBFGS |      1 |          107 |  2.453048e-01 |  1.000000e+00 |  1.423488e-02 |   3.208296e-04 |          2048 |
|  LBFGS |      1 |          108 |  2.453040e-01 |  1.000000e+00 |  3.558719e-02 |   1.294488e-03 |          2048 |
|  LBFGS |      1 |          109 |  2.452977e-01 |  1.000000e+00 |  1.423488e-02 |   8.328380e-04 |          2048 |
|  LBFGS |      1 |          110 |  2.452934e-01 |  1.000000e+00 |  2.135231e-02 |   5.149259e-04 |          2048 |
|  LBFGS |      1 |          111 |  2.452886e-01 |  1.000000e+00 |  1.779359e-02 |   3.650664e-04 |          2048 |
|  LBFGS |      1 |          112 |  2.452854e-01 |  1.000000e+00 |  1.067616e-02 |   2.633981e-04 |          2048 |
|  LBFGS |      1 |          113 |  2.452836e-01 |  1.000000e+00 |  1.067616e-02 |   1.804300e-04 |          2048 |
|  LBFGS |      1 |          114 |  2.452817e-01 |  1.000000e+00 |  7.117438e-03 |   4.251642e-04 |          2048 |
|  LBFGS |      1 |          115 |  2.452741e-01 |  1.000000e+00 |  1.779359e-02 |   9.018440e-04 |          2048 |
|  LBFGS |      1 |          116 |  2.452691e-01 |  1.000000e+00 |  2.135231e-02 |   9.941716e-05 |          2048 |
|=================================================================================================================|

Предскажите метки набора тестов, создайте матрицу беспорядка для набора тестов и оцените ошибку классификации для набора тестов.

UpdatedLabel = predict(UpdatedMdl,XTest);
UpdatedConfusionTest = confusionchart(YTest,UpdatedLabel);

UpdatedL = loss(UpdatedMdl,XTest,YTest)
UpdatedL = 0.1284

Ошибочные уменьшения классификации после resume обновляет модель классификации с большим количеством итераций.

Смотрите также

| |

Введенный в R2017b