Потеря k - самый близкий соседний классификатор перезаменой
возвращает ущерб классификации от перезамены, которая является потерей, вычисленной для данных, используемых L = resubLoss(mdl)fitcknn создать mdl.
Потеря классификации (L) числовой скаляр, интерпретация которого зависит от функции потерь и весов наблюдения в mdl.
Создайте классификатор k - ближайших соседей для ирисовых данных Фишера, где = 5.
Загрузите ирисовый набор данных Фишера.
load fisheririsСоздайте классификатор для пяти самых близких соседей.
mdl = fitcknn(meas,species,'NumNeighbors',5);Исследуйте потерю перезамены классификатора.
L = resubLoss(mdl)
L = 0.0333
Классификатор предсказывает неправильные классификации для 1/30 его обучающих данных.
mdl — k - самая близкая соседняя модель классификатораClassificationKNN объектмодель классификатора k - ближайших соседей, заданная как ClassificationKNN объект.
lossfun — Функция потерь'mincost' (значение по умолчанию) | 'binodeviance' | 'classiferror' | 'exponential' | 'hinge' | 'logit' | 'quadratic' | указатель на функциюФункция потерь, заданная как встроенное имя функции потерь или указатель на функцию.
В следующей таблице перечислены доступные функции потерь.
| Значение | Описание |
|---|---|
'binodeviance' | Биномиальное отклонение |
'classiferror' | Ошибка классификации |
'exponential' | Экспоненциал |
'hinge' | Стержень |
'logit' | Логистический |
'mincost' | Минимальный ожидал стоимость misclassification (для баллов классификации, которые являются апостериорными вероятностями), |
'quadratic' | Квадратичный |
'mincost' подходит для баллов классификации, которые являются апостериорными вероятностями. По умолчанию k - самые близкие соседние модели возвращают апостериорные вероятности как баллы классификации (см. predict).
Можно задать указатель на функцию для пользовательской функции потерь с помощью @ (например, @lossfun). Позвольте n быть количеством наблюдений в X и K быть количеством отличных классов (numel(mdl.ClassNames)). Ваша пользовательская функция потерь должна иметь эту форму:
function lossvalue = lossfun(C,S,W,Cost)C n-by-K логическая матрица со строками, указывающими на класс, которому принадлежит соответствующее наблюдение. Порядок следования столбцов соответствует порядку класса в mdl.ClassNames. Создайте C установкой C(p,q) = 1, если наблюдение p находится в классе q, для каждой строки. Установите все другие элементы строки p к 0.
S n-by-K числовая матрица баллов классификации. Порядок следования столбцов соответствует порядку класса в mdl.ClassNames. Аргумент S матрица баллов классификации, похожих на выход predict.
W n-by-1 числовой вектор весов наблюдения. Если вы передаете W, программное обеспечение нормирует веса, чтобы суммировать к 1.
Cost K-by-K числовая матрица затрат misclassification. Например, Cost = ones(K) – eye(K) задает стоимость 0 для правильной классификации и 1 для misclassification.
Выходной аргумент lossvalue скаляр.
Для получения дополнительной информации о функциях потерь смотрите Потерю Классификации.
Типы данных: char | string | function_handle
Функции Classification loss измеряют прогнозирующую погрешность моделей классификации. Когда вы сравниваете тот же тип потери среди многих моделей, более низкая потеря указывает на лучшую прогнозную модель.
Рассмотрите следующий сценарий.
L является средневзвешенной потерей классификации.
n является объемом выборки.
Для бинарной классификации:
yj является наблюдаемой меткой класса. Программные коды это как –1 или 1, указывая на отрицательный или положительный класс, соответственно.
f (Xj) является необработанным счетом классификации к наблюдению (строка) j данных о предикторе X.
mj = yj f (Xj) является счетом классификации к классификации наблюдения j в класс, соответствующий yj. Положительные значения mj указывают на правильную классификацию и не способствуют очень средней потере. Отрицательные величины mj указывают на неправильную классификацию и значительно способствуют средней потере.
Для алгоритмов, которые поддерживают классификацию мультиклассов (то есть, K ≥ 3):
yj* является вектором K – 1 нуль, с 1 в положении, соответствующем истинному, наблюдаемому классу yj. Например, если истинный класс второго наблюдения является третьим классом и K = 4, то y *2 = [0 0 1 0] ′. Порядок классов соответствует порядку в ClassNames свойство входной модели.
f (Xj) является длиной вектор K музыки класса к наблюдению j данных о предикторе X. Порядок баллов соответствует порядку классов в ClassNames свойство входной модели.
mj = yj* ′ f (Xj). Поэтому mj является скалярным счетом классификации, который модель предсказывает для истинного, наблюдаемого класса.
Весом для наблюдения j является wj. Программное обеспечение нормирует веса наблюдения так, чтобы они суммировали к соответствующей предшествующей вероятности класса. Программное обеспечение также нормирует априорные вероятности, таким образом, они суммируют к 1. Поэтому
Учитывая этот сценарий, следующая таблица описывает поддерживаемые функции потерь, которые можно задать при помощи 'LossFun' аргумент пары "имя-значение".
| Функция потерь | Значение LossFun | Уравнение |
|---|---|---|
| Биномиальное отклонение | 'binodeviance' | |
| Экспоненциальная потеря | 'exponential' | |
| Ошибка классификации | 'classiferror' | Это - взвешенная часть неправильно классифицированных наблюдений где метка класса, соответствующая классу с максимальной апостериорной вероятностью. I {x} является функцией индикатора. |
| Потеря стержня | 'hinge' | |
| Потеря логита | 'logit' | |
| Минимальная стоимость | 'mincost' | Минимальная стоимость. Программное обеспечение вычисляет взвешенную минимальную стоимость с помощью этой процедуры в наблюдениях j = 1..., n.
Взвешенная, средняя, минимальная потеря стоимости |
| Квадратичная потеря | 'quadratic' |
Этот рисунок сравнивает функции потерь (кроме 'mincost') для одного наблюдения по m. Некоторые функции нормированы, чтобы пройти [0,1].

Два затрат сопоставлены с классификацией KNN: истинная стоимость misclassification в классе и ожидаемом misclassification стоится на наблюдение.
Можно установить истинную стоимость misclassification в классе при помощи 'Cost' аргумент пары "имя-значение", когда вы запускаете fitcknn. Значение Cost(i,j) стоимость классификации наблюдения в класс j если его истинным классом является i. По умолчанию, Cost(i,j) = 1 если i ~= j, и Cost(i,j) = 0 если i = j. Другими словами, стоимостью является 0 для правильной классификации и 1 для неправильной классификации.
Два затрат сопоставлены с классификацией KNN: истинная стоимость misclassification в классе и ожидаемом misclassification стоится на наблюдение. Третий выход resubPredict ожидаемая стоимость misclassification на наблюдение.
Предположим, что у вас есть Nobs наблюдения, что вы классифицировали с обученным классификатором mdl, и у вас есть K классы. Команда
[label,score,cost] = resubPredict(mdl)
возвращает матричный cost из размера Nobs- K, среди других выходных параметров. Каждая строка cost матрица содержит ожидаемую (среднюю) стоимость классификации наблюдения в каждый K классы. cost(n,j)
где
K является количеством классов.
апостериорная вероятность класса i для наблюдения X (n).
истинная misclassification стоимость классификации наблюдения как j, когда его истинным классом является i.
ClassificationKNN | fitcknn | resubEdge | resubMargin | resubPredict
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.