Пакет: classreg.learning.partition
Суперклассы: RegressionPartitionedModel
Перекрестный подтвержденный ансамбль регрессии
RegressionPartitionedEnsemble
набор ансамблей регрессии, обученных на перекрестных подтвержденных сгибах. Оцените качество классификации перекрестной проверкой с помощью одного или нескольких “kfold” методов: kfoldfun
, kfoldLoss
, или kfoldPredict
. Каждый “kfold” метод использует модели, обученные на, окутывают наблюдения, чтобы предсказать ответ для наблюдений из сгиба. Например, предположите, что вы пересекаетесь, подтверждают использование пяти сгибов. В этом случае каждый учебный сгиб содержит примерно 4/5 данных, и каждый тестовый сгиб содержит примерно 1/5 данных. Первая модель сохранена в Trained{1}
был обучен на X
и Y
с первым исключенным 1/5 вторая модель сохранена в Trained{2}
был обучен на X
и Y
со вторым исключенным 1/5, и так далее. Когда вы вызываете kfoldPredict
, это вычисляет прогнозы для первого 1/5 данных с помощью первой модели для второго 1/5 данных с помощью второй модели и так далее. Короче говоря, ответ для каждого наблюдения вычисляется kfoldPredict
использование модели, обученной без этого наблюдения.
создает перекрестный подтвержденный ансамбль из cvens
=
crossval(ens
)ens
, ансамбль регрессии. Для получения дополнительной информации синтаксиса смотрите crossval
страница с описанием метода.
создает перекрестный подтвержденный ансамбль когда cvens
= fitrensemble(X,Y,Name,Value)Name
один из 'crossval'
, 'kfold'
, 'holdout'
, 'leaveout'
, или 'cvpartition'
. Для получения дополнительной информации синтаксиса смотрите fitrensemble
страница ссылки на функцию.
|
Ансамбль регрессии создается с |
|
Ребра интервала для числовых предикторов, заданных как массив ячеек p числовые векторы, где p является количеством предикторов. Каждый вектор включает ребра интервала для числового предиктора. Элемент в массиве ячеек для категориального предиктора пуст, потому что программное обеспечение не делает интервала категориальные предикторы. Числовые предикторы интервалов программного обеспечения, только если вы задаете Можно воспроизвести сгруппированные данные о предикторе X = mdl.X; % Predictor data
Xbinned = zeros(size(X));
edges = mdl.BinEdges;
% Find indices of binned predictors.
idxNumeric = find(~cellfun(@isempty,edges));
if iscolumn(idxNumeric)
idxNumeric = idxNumeric';
end
for j = idxNumeric
x = X(:,j);
% Convert x to array if x is a table.
if istable(x)
x = table2array(x);
end
% Group x into bins by using the Xbinned содержит индексы интервала, в пределах от 1 к количеству интервалов, для числовых предикторов. Xbinned значения 0 для категориальных предикторов. Если X содержит NaN s, затем соответствующий Xbinned значениями является NaN s.
|
|
Категориальные индексы предиктора, заданные как вектор положительных целых чисел. |
|
Имя перекрестной подтвержденной модели, вектора символов. |
|
Количество сгибов используется в перекрестном подтвержденном дереве, положительном целом числе. |
|
Объект, содержащий параметры |
|
Числовой скаляр, содержащий количество наблюдений в обучающих данных. |
|
Вектор |
|
Раздел класса |
|
Массив ячеек имен для переменных предикторов, в порядке, в котором они появляются в |
|
Имя переменной отклика |
|
Указатель на функцию для преобразования баллов или вектора символов, представляющего встроенную функцию преобразования. Добавьте или измените ens.ResponseTransform = @function |
|
Массив ячеек ансамблей обучен на сгибах перекрестной проверки. Каждый ансамбль полон, подразумевая, что он содержит свои обучающие данные и веса. |
|
Массив ячеек компактных ансамблей обучен на сгибах перекрестной проверки. |
|
Масштабированный |
|
Матрица A или таблица значений предиктора. Каждый столбец |
|
Числовой вектор-столбец с одинаковым числом строк как |
kfoldLoss | Утрата перекрестной проверки разделенного ансамбля регрессии |
резюме | Возобновите учебный ансамбль |
kfoldLoss | Потеря перекрестной проверки разделенной модели регрессии |
kfoldPredict | Предскажите ответ для наблюдений, не используемых в обучении |
kfoldfun | Крест подтверждает функцию |
Значение. Чтобы изучить, как классы значения влияют на операции копии, смотрите Копирование Объектов (MATLAB).
ClassificationPartitionedEnsemble
| RegressionEnsemble
| RegressionPartitionedModel
| fitrtree