predict

Предскажите ответы с помощью дерева регрессии

Описание

Yfit = predict(Mdl,X) возвращает вектор предсказанных ответов для данных о предикторе в таблице или матричном X, на основе полного или компактного дерева регрессии Mdl.

Yfit = predict(Mdl,X,Name,Value) предсказывает значения ответа с дополнительными опциями, заданными одним или несколькими Name,Value парные аргументы. Например, можно задать, чтобы сократить Mdl к конкретному уровню прежде, чем предсказать ответы.

[Yfit,node] = predict(___) также возвращает вектор предсказанных чисел узла для ответов, с помощью любого из входных параметров в предыдущих синтаксисах.

Входные параметры

развернуть все

Обученное дерево классификации, заданное как RegressionTree или CompactRegressionTree объект модели. Таким образом, Mdl обученная модель классификации, возвращенная fitrtree или compact.

Данные о предикторе, которые будут классифицированы, заданные как числовая матрица или таблица.

Каждая строка X соответствует одному наблюдению, и каждый столбец соответствует одной переменной.

  • Для числовой матрицы:

    • Переменные, составляющие столбцы X должен иметь тот же порядок как переменные предикторы, которые обучили Mdl.

    • Если вы обучили Mdl с помощью таблицы (например, Tbl), затем X может быть числовая матрица если Tbl содержит все числовые переменные предикторы. Обрабатывать числовые предикторы в Tbl как категориальные во время обучения, идентифицируйте категориальные предикторы с помощью CategoricalPredictors аргумент пары "имя-значение" fitrtree. Если Tbl содержит неоднородные переменные предикторы (например, типы числовых и категориальных данных) и X числовая матрица, затем predict выдает ошибку.

  • Для таблицы:

    • predict не поддерживает многостолбцовые переменные и массивы ячеек кроме массивов ячеек из символьных векторов.

    • Если вы обучили Mdl с помощью таблицы (например, Tbl), затем все переменные предикторы в X должен иметь те же имена переменных и типы данных как те, которые обучили Mdl (сохраненный в Mdl.PredictorNames). Однако порядок следования столбцов X не должен соответствовать порядку следования столбцов Tbltbl и X может содержать дополнительные переменные (переменные отклика, веса наблюдения, и т.д.), но predict игнорирует их.

    • Если вы обучили Mdl с помощью числовой матрицы затем предиктор называет в Mdl.PredictorNames и соответствующий переменный предиктор называет в X должно быть то же самое. Чтобы задать имена предиктора во время обучения, смотрите PredictorNames аргумент пары "имя-значение" fitrtree. Все переменные предикторы в X должны быть числовые векторы. X может содержать дополнительные переменные (переменные отклика, веса наблюдения, и т.д.), но predict игнорирует их.

Типы данных: table | double | single

Аргументы в виде пар имя-значение

Задайте дополнительные разделенные запятой пары Name,Value аргументы. Name имя аргумента и Value соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Сокращение уровня, заданного как разделенная запятой пара, состоящая из 'Subtrees' и вектор неотрицательных целых чисел в порядке возрастания или 'all'.

Если вы задаете вектор, то всеми элементами должен быть, по крайней мере, 0 и в большей части max(Mdl.PruneList). 0 указывает на полное, несокращенное дерево и max(Mdl.PruneList) указывает на полностью сокращенное дерево (т.е. только корневой узел).

Если вы задаете 'all', затем predict работает со всеми поддеревьями (т.е. целая последовательность сокращения). Эта спецификация эквивалентна использованию 0:max(Mdl.PruneList).

predict чернослив Mdl к каждому уровню, обозначенному в Subtrees, и затем оценивает соответствующие выходные аргументы. Размер Subtrees определяет размер некоторых выходных аргументов.

Вызвать Subtrees, свойства PruneList и PruneAlpha из Mdl mustBeNonempty. Другими словами, вырастите Mdl установкой 'Prune','on', или путем сокращения Mdl использование prune.

Пример: 'Subtrees','all'

Типы данных: single | double | char | string

Выходные аргументы

развернуть все

Предсказанные значения ответа, возвращенные как числовой вектор-столбец с одинаковым числом строк как X. Каждая строка Yfit дает предсказанный ответ на соответствующую строку X, на основе Mdl.

Числа узла для прогнозов, заданных как числовой вектор. Каждая запись соответствует предсказанной вершине в Mdl для соответствующей строки X.

Примеры

развернуть все

Загрузите carsmall набор данных. Рассмотрите Displacement, Horsepower, и Weight как предикторы ответа MPG.

load carsmall
X = [Displacement Horsepower Weight];

Вырастите дерево регрессии использование целого набора данных.

Mdl = fitrtree(X,MPG);

Предскажите MPG для автомобиля с 200 кубическими объемами двигателя дюйма, 150 лошадиных сил, и это весит 3 000 фунтов.

X0 = [200 150 3000];
MPG0 = predict(Mdl,X0)
MPG0 = 21.9375

Дерево регрессии предсказывает КПД автомобиля, чтобы быть 21,94 мили на галлон.

Расширенные возможности

Введенный в R2011a

Для просмотра документации необходимо авторизоваться на сайте