fitglm

Создайте обобщенную линейную модель регрессии

Описание

пример

mdl = fitglm(tbl) возвращает обобщенную линейную подгонку модели к переменным в таблице или массиве набора данных tbl. По умолчанию, fitglm берет последнюю переменную в качестве переменной отклика.

пример

mdl = fitglm(X,y) возвращает обобщенную линейную модель ответов y, соответствуйте к матрице данных X.

пример

mdl = fitglm(___,modelspec) возвращает обобщенную линейную модель типа, который вы задаете в modelspec.

пример

mdl = fitglm(___,Name,Value) возвращает обобщенную линейную модель с дополнительными опциями, заданными одним или несколькими Name,Value парные аргументы.

Например, можно задать, который переменные являются категориальными, распределение переменной отклика и функция ссылки, чтобы использовать.

Примеры

свернуть все

Сделайте логистическую биномиальную модель из вероятности курения как функция возраста, веса и пола, с помощью двухсторонней модели взаимодействий.

Загрузите hospital массив набора данных.

load hospital
dsa = hospital;

Задайте модель с помощью формулы, которая позволяет до двухсторонних взаимодействий между возрастом переменных, весом и полом. Курильщик является переменной отклика.

modelspec = 'Smoker ~ Age*Weight*Sex - Age:Weight:Sex';

Подбирайте логистическую биномиальную модель.

mdl = fitglm(dsa,modelspec,'Distribution','binomial')
mdl = 
Generalized linear regression model:
    logit(Smoker) ~ 1 + Sex*Age + Sex*Weight + Age*Weight
    Distribution = Binomial

Estimated Coefficients:
                        Estimate         SE         tStat      pValue 
                       ___________    _________    ________    _______

    (Intercept)            -6.0492       19.749     -0.3063    0.75938
    Sex_Male               -2.2859       12.424    -0.18399    0.85402
    Age                    0.11691      0.50977     0.22934    0.81861
    Weight                0.031109      0.15208     0.20455    0.83792
    Sex_Male:Age          0.020734      0.20681     0.10025    0.92014
    Sex_Male:Weight        0.01216     0.053168     0.22871     0.8191
    Age:Weight         -0.00071959    0.0038964    -0.18468    0.85348


100 observations, 93 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 5.07, p-value = 0.535

Все p-значения (под pValue) являются большими. Это означает, что ни один из коэффициентов не является значительным. Большое p- значение для теста модели, 0.535, указывает, что эта сила модели не отличается статистически от постоянной модели.

Создайте выборочные данные с 20 предикторами и ответ Пуассона, использующий всего три из предикторов, плюс константа.

rng('default') % for reproducibility
X = randn(100,7);
mu = exp(X(:,[1 3 6])*[.4;.2;.3] + 1);
y = poissrnd(mu);

Подбирайте обобщенную линейную модель с помощью распределения Пуассона.

mdl =  fitglm(X,y,'linear','Distribution','poisson')
mdl = 
Generalized linear regression model:
    log(y) ~ 1 + x1 + x2 + x3 + x4 + x5 + x6 + x7
    Distribution = Poisson

Estimated Coefficients:
                   Estimate        SE        tStat        pValue  
                   _________    ________    ________    __________

    (Intercept)      0.88723    0.070969      12.502    7.3149e-36
    x1               0.44413    0.052337      8.4858    2.1416e-17
    x2             0.0083388    0.056527     0.14752       0.88272
    x3               0.21518    0.063416      3.3932    0.00069087
    x4             -0.058386    0.065503    -0.89135       0.37274
    x5             -0.060824    0.073441     -0.8282       0.40756
    x6               0.34267    0.056778      6.0352    1.5878e-09
    x7               0.04316     0.06146     0.70225       0.48252


100 observations, 92 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 119, p-value = 1.55e-22

p- значения 2.14e-17, 0.00069, и 1.58e-09 указывают что коэффициенты переменных x1, x3, и |x6|are, статистически значительный.

Входные параметры

свернуть все

Входные данные включая переменные прогноза и переменные отклика, заданные как таблица или массив набора данных. Переменные предикторы и переменная отклика могут быть числовыми, логическими, категориальными, символ или строка. Переменная отклика может иметь тип данных кроме числового только если 'Distribution' 'binomial'.

  • По умолчанию, fitglm берет последнюю переменную в качестве переменной отклика и других как переменные предикторы.

  • Чтобы установить различный столбец как переменную отклика, используйте ResponseVar аргумент пары "имя-значение".

  • Чтобы использовать подмножество столбцов как предикторы, используйте PredictorVars аргумент пары "имя-значение".

  • Чтобы задать спецификацию модели, установите modelspec аргумент с помощью формулы или матрицы условий. Матрица формулы или условий задает который столбцы использовать в качестве переменных предикторов или переменных отклика.

Имена переменных в таблице не должны быть допустимыми идентификаторами MATLAB®. Однако, если имена не допустимы, вы не можете использовать формулу, когда вы соответствуете или настраиваете модель; например:

  • Вы не можете задать modelspec использование формулы.

  • Вы не можете использовать формулу, чтобы задать условия, чтобы добавить или удалить, когда вы используете addTerms функционируйте или removeTerms функция, соответственно.

  • Вы не можете использовать формулу, чтобы задать нижние и верхние границы модели, когда вы используете step или stepwiseglm функция с аргументами пары "имя-значение" 'Lower' и 'Upper', соответственно.

Можно проверить имена переменных в tbl при помощи isvarname функция. Следующий код возвращает логический 1 TRUE) для каждой переменной, которая имеет допустимое имя переменной.

cellfun(@isvarname,tbl.Properties.VariableNames)
Если имена переменных в tbl не допустимы, затем преобразуют их при помощи matlab.lang.makeValidName функция.
tbl.Properties.VariableNames = matlab.lang.makeValidName(tbl.Properties.VariableNames);

Переменные предикторы, заданные как n-by-p матрица, где n является количеством наблюдений и p, являются количеством переменных предикторов. Каждый столбец X представляет одну переменную, и каждая строка представляет одно наблюдение.

По умолчанию существует постоянный член в модели, если вы явным образом не удаляете его, не включайте столбец 1 с в X.

Типы данных: single | double

Переменная отклика, заданная как вектор или матрица.

  • Если 'Distribution' не 'binomial', затем y должен быть n-by-1 вектор, где n является количеством наблюдений. Каждая запись в y ответ для соответствующей строки X. Тип данных должен быть одним или двойным.

  • Если 'Distribution' 'binomial', затем y может быть n-by-1 вектор или n-by-2 матрица с количествами в столбце 1 и BinomialSize в столбце 2.

Типы данных: single | double | logical | categorical

Спецификация модели, заданная как одно из этих значений.

  • Вектор символов или скаляр строки именование модели.

    ЗначениеТип модели
    'constant'Модель содержит только константу (прерывание) термин.
    'linear'Модель содержит прерывание и линейный член для каждого предиктора.
    'interactions'Модель содержит прерывание, линейный член для каждого предиктора и все продукты пар отличных предикторов (никакие условия в квадрате).
    'purequadratic'Модель содержит термин прерывания и линейный и придает условиям квадратную форму для каждого предиктора.
    'quadratic'Модель содержит термин прерывания, линейный, и придает квадратную форму условиям для каждого предиктора и всем продуктам пар отличных предикторов.
    'polyijk'Модель является полиномом со всеми условиями до степени i в первом предикторе, степень j во втором предикторе, и так далее. Задайте максимальную степень для каждого предиктора при помощи цифр 0 хотя 9. Модель содержит периоды взаимодействия, но степень каждого периода взаимодействия не превышает максимальное значение заданных степеней. Например, 'poly13' имеет прерывание и x 1, x 2, x 22, x 23, x 1*x2, и x 1*x22 условия, где x 1 и x 2 является первыми и вторыми предикторами, соответственно.
  • t (p + 1) матрица или Матрица Условий, задавая члены в модели, где t является количеством условий и p, является количеством переменных предикторов и +1 счетом на переменную отклика. Матрица условий удобна, когда количество предикторов является большим, и вы хотите сгенерировать условия программно.

  • Вектор символов или скаляр строки представление Формулы в форме

    'Y ~ terms',

    где terms находятся в Обозначении Уилкинсона. Имена переменных в формуле должны быть допустимыми идентификаторами MATLAB.

Пример: 'quadratic'

Аргументы в виде пар имя-значение

Задайте дополнительные разделенные запятой пары Name,Value аргументы. Name имя аргумента и Value соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Пример: 'Distribution','normal','link','probit','Exclude',[23,59] указывает, что распределение ответа нормально, и сообщает fitglm чтобы использовать ссылку пробита функционируют и исключают 23-и и 59-е наблюдения из подгонки.

Количество испытаний за биномиальное распределение, которое является объемом выборки, заданным как разделенная запятой пара, состоящая из 'BinomialSize' и имя переменной в tbl, числовой скаляр или числовой вектор той же длины как ответ. Это - параметр n для подходящего биномиального распределения. BinomialSize применяется только когда Distribution параметром является 'binomial'.

Если BinomialSize скалярное значение, которое означает, что все наблюдения имеют то же количество испытаний.

Как альтернатива BinomialSize, можно задать ответ как матрицу 2D столбца с количествами в столбце 1 и BinomialSize в столбце 2.

Типы данных: single | double | char | string

Категориальный список переменных, заданный как разделенная запятой пара, состоящая из 'CategoricalVars' и или массив строк или массив ячеек из символьных векторов, содержащий категориальные имена переменных в таблице или массиве набора данных tbl, или логический или числовой вектор индекса указание, какие столбцы являются категориальными.

  • Если данные находятся в таблице или массиве набора данных tbl, затем, по умолчанию, fitglm обработки все категориальные значения, логические значения, символьные массивы, строковые массивы и массивы ячеек из символьных векторов как категориальные переменные.

  • Если данные находятся в матричном X, затем значение по умолчанию 'CategoricalVars' пустой матричный []. Таким образом, никакая переменная не является категориальной, если вы не задаете его как категориальный.

Например, можно задать наблюдения 2 и 3 из 6 как категориальное использование любого из следующих примеров.

Пример: 'CategoricalVars',[2,3]

Пример: 'CategoricalVars',logical([0 1 1 0 0 0])

Типы данных: single | double | logical | string | cell

Индикатор, чтобы вычислить дисперсионный параметр для 'binomial' и 'poisson' распределения, заданные как разделенная запятой пара, состоящая из 'DispersionFlag' и одно из следующих.

trueОцените дисперсионный параметр при вычислении стандартных погрешностей
falseЗначение по умолчанию. Используйте теоретическое значение при вычислении стандартных погрешностей

Подходящая функция всегда оценивает дисперсию для других распределений.

Пример: 'DispersionFlag',true

Распределение переменной отклика, заданной как разделенная запятой пара, состоящая из 'Distribution' и одно из следующих.

'normal'Нормальное распределение
'binomial'Биномиальное распределение
'poisson'Распределение Пуассона
'gamma'Гамма распределение
'inverse gaussian'Обратное Распределение Гаусса

Пример: 'Distribution','gamma'

Наблюдения, чтобы исключить из подгонки, заданной как разделенная запятой пара, состоящая из 'Exclude' и логический или числовой вектор индекса указание, который наблюдения исключить из подгонки.

Например, можно исключить наблюдения 2 и 3 из 6 использований любого из следующих примеров.

Пример: 'Exclude',[2,3]

Пример: 'Exclude',logical([0 1 1 0 0 0])

Типы данных: single | double | logical

Индикатор для постоянного термина (прерывание) в подгонке, заданной как разделенная запятой пара, состоящая из 'Intercept' и любой true включать или false удалить постоянный термин из модели.

Используйте 'Intercept' только при определении модели с помощью вектора символов или скаляра строки, не формулы или матрицы.

Пример: 'Intercept',false

Возместите переменную в подгонке, заданной как разделенная запятой пара, состоящая из 'Offset' и вектор или имя переменной с той же длиной как ответ.

fitglm использование Offset как дополнительный предиктор, с содействующим значением, зафиксированным в 1,0. Другими словами, формула для подбора кривой

f (μ) ~ Offset + (terms involving real predictors)

с Offset предиктор, имеющий коэффициент 1.

Например, рассмотрите модель регрессии Пуассона. Предположим, что количество количеств известно по теоретическим причинам быть пропорциональным предиктору A. При помощи журнала соединяют функцию и путем определения log(A) как смещение, можно обеспечить модель, чтобы удовлетворить этому теоретическому ограничению.

Типы данных: single | double | char | string

Переменные предикторы, чтобы использовать в подгонке, заданной как разделенная запятой пара, состоящая из 'PredictorVars' и или массив строк или массив ячеек из символьных векторов имен переменных в таблице или массиве набора данных tbl, или логический или числовой вектор индекса указание, какие столбцы являются переменными предикторами.

Значения строки или векторы символов должны быть среди имен в tbl, или имена вы задаете использование 'VarNames' аргумент пары "имя-значение".

Значением по умолчанию являются все переменные в X, или все переменные в tbl за исключением ResponseVar.

Например, можно задать вторые и третьи переменные как переменные предикторы с помощью любого из следующих примеров.

Пример: 'PredictorVars',[2,3]

Пример: 'PredictorVars',logical([0 1 1 0 0 0])

Типы данных: single | double | logical | string | cell

Переменная отклика, чтобы использовать в подгонке, заданной как разделенная запятой пара, состоящая из 'ResponseVar' и или вектор символов или скаляр строки, содержащий имя переменной в таблице или массиве набора данных tbl, или логический или числовой вектор индекса указание, какой столбец является переменной отклика. Обычно необходимо использовать 'ResponseVar' при подборе кривой таблице или массиву набора данных tbl.

Например, можно задать четвертую переменную, сказать yield, как ответ из шести переменных, одним из следующих способов.

Пример: 'ResponseVar','yield'

Пример: 'ResponseVar',[4]

Пример: 'ResponseVar',logical([0 0 0 1 0 0])

Типы данных: single | double | logical | char | string

Имена переменных, заданных как разделенная запятой пара, состоящая из 'VarNames' и массив строк или массив ячеек из символьных векторов включая имена для столбцов X во-первых, и имя для переменной отклика y в последний раз.

'VarNames' не применимо к переменным в таблице или массиве набора данных, потому что те переменные уже имеют имена.

Имена переменных не должны быть допустимыми идентификаторами MATLAB. Однако, если имена не допустимы, вы не можете использовать формулу, когда вы соответствуете или настраиваете модель; например:

  • Вы не можете использовать формулу, чтобы задать условия, чтобы добавить или удалить, когда вы используете addTerms функционируйте или removeTerms функция, соответственно.

  • Вы не можете использовать формулу, чтобы задать нижние и верхние границы модели, когда вы используете step или stepwiseglm функция с аргументами пары "имя-значение" 'Lower' и 'Upper', соответственно.

Прежде, чем задать 'VarNames',varNames, можно проверить имена переменных в varNames при помощи isvarname функция. Следующий код возвращает логический 1 TRUE) для каждой переменной, которая имеет допустимое имя переменной.

cellfun(@isvarname,varNames)
Если имена переменных в varNames не допустимы, затем преобразуют их при помощи matlab.lang.makeValidName функция.
varNames = matlab.lang.makeValidName(varNames);

Пример: 'VarNames',{'Horsepower','Acceleration','Model_Year','MPG'}

Типы данных: string | cell

Веса наблюдения, заданные как разделенная запятой пара, состоящая из 'Weights' и n-by-1 вектор неотрицательных скалярных значений, где n является количеством наблюдений.

Типы данных: single | double

Выходные аргументы

свернуть все

Обобщенная линейная модель, представляющая припадок наименьших квадратов ссылки ответа на данные, возвращенные как GeneralizedLinearModel объект.

Для свойств и методов обобщенного линейного объекта модели, mdl, смотрите GeneralizedLinearModel страница класса.

Больше о

свернуть все

Матрица условий

Матрица условий T t (p + 1) матричные условия определения в модели, где t является количеством условий, p является количеством переменных предикторов и +1 счетом на переменную отклика. Значение T(i,j) экспонента переменной j в термине i.

Например, предположите, что вход включает три переменных предиктора AB, и C и переменная отклика Y в порядке ABC, и Y. Каждая строка T представляет один термин:

  • [0 0 0 0] — Постоянный термин или прерывание

  • [0 1 0 0] B; эквивалентно, A^0 * B^1 * C^0

  • [1 0 1 0]A*C

  • [2 0 0 0]A^2

  • [0 1 2 0]B*(C^2)

0 в конце каждого термина представляет переменную отклика. В общем случае вектор-столбец из нулей в матрице условий представляет положение переменной отклика. Если у вас есть переменные прогноза и переменные отклика в матрице и вектор-столбце, то необходимо включать 0 для переменной отклика в последнем столбце каждой строки.

Формула

Формула для спецификации модели является вектором символов или скаляром строки формы 'Y ~ terms'.

  • Y имя ответа.

  • terms представляет условия предиктора в модели с помощью обозначения Уилкинсона.

Например:

  • 'Y ~ A + B + C' задает линейную модель с тремя переменными с прерыванием.

  • 'Y ~ A + B + C – 1' задает линейную модель с тремя переменными без прерывания. Обратите внимание на то, что формулы включают константу (прерывание) термин по умолчанию. Чтобы исключить постоянный термин из модели, необходимо включать –1 в формуле.

Обозначение Уилкинсона

Обозначение Уилкинсона описывает условия, существующие в модели. Обозначение относится к условиям, существующим в модели, не ко множителям (коэффициенты) тех условий.

Обозначение Уилкинсона использует эти символы:

  • + средние значения включают следующую переменную.

  • средние значения не включают следующую переменную.

  • : задает взаимодействие, которое является продуктом условий.

  • * задает взаимодействие и все условия более низкоуровневые.

  • ^ возводит предиктор в степень, точно как в * повторный, таким образом, ^ включает условия более низкоуровневые также.

  • () условия групп.

Эта таблица показывает типичные примеры обозначения Уилкинсона.

Обозначение УилкинсонаТермин в стандартном обозначении
1Постоянный (прерывание) термин
A^k, где k положительное целое числоA, A2..., Ak
A + BAB
A*BABA, B
A:BA*B только
–BНе включайте B
A*B + CABCA, B
A + B + C + A:BABCA, B
A*B*C – A:B:CABCA, B , A*C, B*C
A*(B + C)ABCA, B , A*C

Обозначение Statistics and Machine Learning Toolbox™ всегда включает постоянный термин, если вы явным образом не удаляете термин с помощью –1.

Для получения дополнительной информации смотрите Обозначение Уилкинсона.

Каноническая функция ссылки

Функцией ссылки по умолчанию для обобщенной линейной модели является canonical link function.

Канонические функции ссылки для обобщенных линейных моделей

РаспределениеСоедините имя функцииФункция ссылкиСредняя (обратная) функция
'normal''identity'f (μ) = μμ = Xb
'binomial''logit'f (μ) = журнал (μ / (1–μ))μ = exp (Xb) / (1 + exp (Xb))
'poisson''log'f (μ) = журнал (μ)μ = exp (Xb)
'gamma'-1f (μ) = 1/μμ = 1 / (Xb)
'inverse gaussian'-2f (μ) = 1/μ2μ = (Xb) –1/2

Советы

  • Обобщенная линейная модель mdl стандартная линейная модель, если вы не задаете в противном случае с Distribution пара "имя-значение".

  • Для методов, таких как plotResiduals или devianceTest, или свойства GeneralizedLinearModel возразите, смотрите GeneralizedLinearModel.

  • После обучения модель можно сгенерировать код C/C++, который предсказывает ответы для новых данных. Генерация кода C/C++ требует MATLAB Coder™. Для получения дополнительной информации смотрите Введение в Генерацию кода.

Алгоритмы

  • fitglm обрабатывает категориальный предиктор можно следующим образом:

    • Модель с категориальным предиктором, который имеет уровни L (категории), включает   переменные индикатора L - 1. Модель использует первую категорию в качестве контрольного уровня, таким образом, это не включает переменную индикатора для контрольного уровня. Если типом данных категориального предиктора является categorical, затем можно проверять порядок категорий при помощи categories и переупорядочьте категории при помощи reordercats настроить контрольный уровень.

    • fitglm обрабатывает группу   переменных индикатора L - 1 как одна переменная. Если вы хотите обработать переменные индикатора как отличные переменные предикторы, создайте переменные индикатора вручную при помощи dummyvar. Затем используйте переменные индикатора, кроме той, соответствующей контрольному уровню категориальной переменной, когда вы подберете модель. Для категориального предиктора X, если вы задаете все столбцы dummyvar(X) и термин прерывания в качестве предикторов, затем матрица проекта становится неполным рангом.

    • Периоды взаимодействия между непрерывным предиктором и категориальным предиктором с уровнями L состоят из поэлементного произведения   переменных индикатора L - 1 с непрерывным предиктором.

    • Периоды взаимодействия между двумя категориальными предикторами с L и уровнями M состоят из (L – 1) *   переменные индикатора (M - 1), чтобы включать все возможные комбинации двух категориальных уровней предиктора.

    • Вы не можете задать условия высшего порядка для категориального предиктора, потому что квадрат индикатора равен себе.

  • fitglm рассматривает NaN, '' (пустой символьный вектор), "" (пустая строка), <missing>, и <undefined> значения в tblX, и Y быть отсутствующими значениями. fitglm не использует наблюдения с отсутствующими значениями в подгонке. ObservationInfo свойство подобранной модели указывает действительно ли fitglm использование каждое наблюдение в подгонке.

Альтернативная функциональность

  • Используйте stepwiseglm выбрать спецификацию модели автоматически. Используйте step, addTerms, или removeTerms настраивать подобранную модель.

Ссылки

[1] Collett, D. Моделирование двоичных данных. Нью-Йорк: Chapman & Hall, 2002.

[2] Добсон, A. J. Введение в обобщенные линейные модели. Нью-Йорк: Chapman & Hall, 1990.

[3] Маккуллаг, P. и Дж. А. Нелдер. Обобщенные линейные модели. Нью-Йорк: Chapman & Hall, 1990.

Расширенные возможности

Введенный в R2013b