covarianceParameters

Класс: GeneralizedLinearMixedModel

Извлеките параметры ковариации обобщенной линейной модели смешанных эффектов

Описание

psi = covarianceParameters(glme) возвращает предполагаемые предшествующие параметры ковариации предикторов случайных эффектов в обобщенной линейной модели glme смешанных эффектов.

[psi,dispersion] = covarianceParameters(glme) также возвращает оценку дисперсионного параметра.

пример

[psi,dispersion,stats] = covarianceParameters(glme) также возвращает массив ячеек stats содержание параметра ковариации оценивает и связанная статистика.

[___] = covarianceParameters(glme,Name,Value) возвращает любой из вышеупомянутых выходных аргументов с помощью дополнительных опций, заданных одним или несколькими Name,Value парные аргументы. Например, можно задать доверительный уровень для пределов достоверности параметров ковариации.

Входные параметры

развернуть все

Обобщенная линейная модель смешанных эффектов, заданная как GeneralizedLinearMixedModel объект. Для свойств и методов этого объекта, смотрите GeneralizedLinearMixedModel.

Аргументы в виде пар имя-значение

Задайте дополнительные разделенные запятой пары Name,Value аргументы. Name имя аргумента и Value соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Уровень значения, заданный как разделенная запятой пара, состоящая из 'Alpha' и скалярное значение в области значений [0,1]. Для значения α, доверительный уровень является 100 × (1 – α) %.

Например, для 99% доверительных интервалов, можно задать доверительный уровень можно следующим образом.

Пример: 'Alpha',0.01

Типы данных: single | double

Выходные аргументы

развернуть все

Предполагаемые предшествующие параметры ковариации для предикторов случайных эффектов, возвращенных как массив ячеек длины R, где R является количеством сгруппированных переменных, используемых в модели. psi{r} содержит ковариационную матрицу случайных эффектов, сопоставленных со сгруппированной переменной gr, где r = 1, 2..., R, порядок сгруппированных переменных в psi совпадает с заказом, введенным, подбирая модель. Для получения дополнительной информации о сгруппированных переменных смотрите Сгруппированные переменные.

Дисперсионный параметр, возвращенный как скалярное значение.

Параметр ковариации оценивает и связанная статистика, возвращенная как массив ячеек длины (R + 1), где R является количеством сгруппированных переменных, используемых в модели. Первые ячейки R stats каждый содержит массив набора данных со следующими столбцами.

ColumnName Описание
GroupИмя сгруппированной переменной
Name1Имя первого переменного предиктора
Name2Имя второго переменного предиктора
Type

Если Name1 и Name2 то же самое, затем Type std Стандартное отклонение.

Если Name1 и Name2 отличаются, затем Type corr Корреляция.

Estimate

Если Name1 и Name2 то же самое, затем Estimate стандартное отклонение случайного эффекта, сопоставленного с предиктором Name1 или Name2.

Если Name1 и Name2 отличаются, затем Estimate корреляция между случайными эффектами, сопоставленными с предикторами Name1 и Name2.

LowerНижний предел доверительного интервала для параметра ковариации
UpperВерхний предел доверительного интервала для параметра ковариации

Ячейка R + 1 содержит связанную статистику для дисперсионного параметра.

Рекомендуется что присутствие или отсутствие параметров ковариации в glme будьте протестированы с помощью compare метод, который использует тест отношения правдоподобия.

Подбирая модель GLME с помощью fitglme и одно из наибольшего правдоподобия соответствует методам ('Laplace' или 'ApproximateLaplace'), covarianceParameters выводит доверительные интервалы в stats на основе приближения Лапласа к логарифмической вероятности обобщенной линейной модели смешанных эффектов.

Подбирая модель GLME с помощью fitglme и одна из псевдо вероятности соответствует методам ('MPL' или 'REMPL'), covarianceParameters выводит доверительные интервалы в stats на основе подбиравшей линейной модели смешанных эффектов от итоговой псевдо итерации вероятности.

Примеры

развернуть все

Загрузите выборочные данные.

load mfr

Эти симулированные данные от компании-производителя, которая управляет 50 фабриками во всем мире с каждой фабрикой, запускающей процесс пакетной обработки, чтобы создать готовое изделие. Компания хочет сократить число дефектов в каждом пакете, таким образом, это разработало новый производственный процесс. Чтобы протестировать эффективность нового процесса, компания выбрала 20 своих фабрик наугад, чтобы участвовать в эксперименте: Десять фабрик реализовали новый процесс, в то время как другие десять продолжали запускать старый процесс. На каждой из этих 20 фабрик компания запустила пять пакетов (для в общей сложности 100 пакетов) и записала следующие данные:

  • Отметьте, чтобы указать, использовал ли пакет новый процесс (newprocess)

  • Время вычислений для каждого пакета, в часах (time)

  • Температура пакета, в градусах Цельсия (temp)

  • Категориальная переменная, указывающая на поставщика (AB, или C) из химиката, используемого в пакете (supplier)

  • Количество дефектов в пакете (defects)

Данные также включают time_dev и temp_dev, которые представляют абсолютное отклонение времени и температуры, соответственно, из стандарта процесса 3 часов на уровне 20 градусов Цельсия.

Подбирайте обобщенную линейную модель смешанных эффектов использование newprocess, time_dev, temp_dev, и supplier как предикторы фиксированных эффектов. Включайте термин случайных эффектов для прерывания, сгруппированного factory, составлять качественные различия, которые могут существовать из-за специфичных для фабрики изменений. Переменная отклика defects имеет распределение Пуассона, и соответствующая функция ссылки для этой модели является журналом. Используйте подходящий метод Лапласа, чтобы оценить коэффициенты. Задайте фиктивную переменную, кодирующую как 'effects', таким образом, фиктивные переменные коэффициенты суммируют к 0.

Количество дефектов может быть смоделировано с помощью распределения Пуассона

дефектыijПуассон(μij)

Это соответствует обобщенной линейной модели смешанных эффектов

журнал(μij)=β0+β1newprocessij+β2time_devij+β3temp_devij+β4supplier_Cij+β5supplier_Bij+bi,

где

  • дефектыij количество дефектов, наблюдаемых в пакете, произведенном фабрикой i во время пакета j.

  • μij среднее количество дефектов, соответствующих фабрике i (где i=1,2,...,20) во время пакета j (где j=1,2,...,5).

  • newprocessij, time_devij, и temp_devij измерения для каждой переменной, которые соответствуют фабрике i во время пакета j. Например, newprocessij указывает ли пакет, произведенный фабрикой i во время пакета j используемый новый процесс.

  • supplier_Cij и supplier_Bij фиктивные переменные, которые используют эффекты (сумма к нулю) кодирование, чтобы указать ли компания C или B, соответственно, предоставленный химикаты процесса для пакета производятся фабрикой i во время пакета j.

  • biN(0,σb2) прерывание случайных эффектов для каждой фабрики i это составляет специфичное для фабрики изменение по качеству.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Вычислите и отобразите оценку предшествующего параметра ковариации для предиктора случайных эффектов.

[psi,dispersion,stats] = covarianceParameters(glme);
psi{1}
ans = 0.0985

psi{1} оценка предшествующей ковариационной матрицы первой сгруппированной переменной. В этом примере существует только одна сгруппированная переменная (factory), таким образом, psi{1} оценка σb2.

Отобразите дисперсионный параметр.

dispersion
dispersion = 1

Отобразите предполагаемое стандартное отклонение случайного эффекта, сопоставленного с предиктором. Первая ячейка stats содержит статистику для factory, в то время как вторая ячейка содержит статистику для дисперсионного параметра.

stats{1}
ans = 
    Covariance Type: Isotropic

    Group      Name1                  Name2                  Type       
    factory    {'(Intercept)'}        {'(Intercept)'}        {'std'}    


    Estimate    Lower      Upper  
    0.31381     0.19253    0.51148

Предполагаемое стандартное отклонение случайного эффекта, сопоставленного с предиктором, 0.31381. 95%-й доверительный интервал [0.19253, 0.51148]. Поскольку доверительный интервал не содержит 0, случайное прерывание является значительным на 5%-м уровне значения.