Создайте d-дерево K самый близкий соседний искатель
KDTreeSearcher объекты модели хранят результаты самого близкого соседнего поиска, который использует алгоритм d-дерева K. Результаты включают обучающие данные, метрику расстояния и ее параметры и максимальное количество точек данных в каждой вершине (то есть, размер блока). Алгоритм d-дерева K делит n-by-K набор данных путем рекурсивного разделения точек n в K - мерное пространство в двоичное дерево.
Если вы создаете KDTreeSearcher объект модели, можно искать сохраненное дерево, чтобы найти все соседние точки к данным о запросе путем выполнения самого близкого соседнего поиска с помощью knnsearch или поиск радиуса использование rangesearch. Алгоритм d-дерева K более эффективен, чем алгоритм исчерпывающего поиска, когда K мал (то есть, K ≤ 10), обучение и наборы запроса не разреженны, и обучение и запрашивают наборы, имеют много наблюдений.
Используйте любого createns функционируйте или KDTreeSearcher функция (описанный здесь), чтобы создать KDTreeSearcher объект модели. Обе функции используют тот же синтаксис за исключением того, что createns функция имеет 'NSMethod' аргумент пары "имя-значение", который вы используете, чтобы выбрать самый близкий соседний метод поиска. createns функция также создает ExhaustiveSearcher объект. Задайте 'NSMethod','kdtree' создать KDTreeSearcher объект. Значением по умолчанию является 'kdtree' если K ≤ 10, обучающие данные не разреженны, и метрика расстояния является Евклидовым, городским кварталом, Чебычевым или Минковским.
выращивает d-дерево K по умолчанию (Mdl = KDTreeSearcher(X)Mdl) использование n-by-K числовая матрица обучающих данных (X).
задает дополнительные опции с помощью одного или нескольких аргументов пары "имя-значение". Можно задать максимальное количество точек данных в каждой вершине (то есть, размер блока) и метрика расстояния, и установить метрический параметр расстояния (Mdl = KDTreeSearcher(X,Name,Value)DistParameterСвойство. Например, KDTreeSearcher(X,'Distance','minkowski','BucketSize',10) задает, чтобы использовать расстояние Минковскего при поиске самых близких соседей и использовать 10 для размера блока. Задавать DistParameter, используйте P аргумент пары "имя-значение".
knnsearch | Найдите k - ближайших соседей с помощью объекта искателя |
rangesearch | Найдите всех соседей на заданном расстоянии с помощью объекта искателя |