fitted

Класс: LinearMixedModel

Подходящие ответы из линейной модели смешанных эффектов

Описание

yfit = fitted(lme) возвращает подходящий условный ответ в линейную модель lme смешанных эффектов.

пример

yfit = fitted(lme,Name,Value) возвращает подходящий ответ в линейную модель lme смешанных эффектов с дополнительными опциями, заданными одним или несколькими Name,Value парные аргументы.

Например, можно задать, хотите ли вы вычислить подходящий крайний ответ.

Входные параметры

развернуть все

Линейная модель смешанных эффектов, заданная как LinearMixedModel объект, созданный с помощью fitlme или fitlmematrix.

Аргументы в виде пар имя-значение

Задайте дополнительные разделенные запятой пары Name,Value аргументы. Name имя аргумента и Value соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Индикатор для условного ответа, заданного как разделенная запятой пара, состоящая из 'Conditional' и любое из следующих.

trueВклад и от зафиксированных эффектов и от случайных эффектов (условное выражение)
falseВклад только от фиксированных (крайних) эффектов

Пример: 'Conditional',false

Типы данных: логический

Выходные аргументы

развернуть все

Подходящие значения ответа, возвращенные как n-by-1 вектор, где n является количеством наблюдений.

Примеры

развернуть все

Загрузите выборочные данные.

load flu

flu массив набора данных имеет Date переменная и 10 переменных, содержащих оцененные уровни гриппа (в 9 различных областях, оцененных от поисковых запросов Google®, плюс общенациональная оценка из Центра по контролю и профилактике заболеваний, CDC).

Чтобы подбирать линейно смешанную модель эффектов, ваши данные должны быть в правильно отформатированном массиве набора данных. Чтобы подбирать линейную модель смешанных эффектов с уровнями гриппа как ответы и область как переменный предиктор, объедините эти девять столбцов, соответствующих областям в массив. Новый массив набора данных, flu2, должен иметь переменную отклика, FluRate, номинальная переменная, Region, это показывает, какая область каждая оценка от, и сгруппированная переменная Date.

flu2 = stack(flu,2:10,'NewDataVarName','FluRate','IndVarName','Region');
flu2.Date = nominal(flu2.Date);

Подбирайте линейную модель смешанных эффектов с фиксированными эффектами для области и случайного прерывания, которое варьируется Date.

Область является категориальной переменной. Можно задать контрасты для категориальных переменных с помощью DummyVarCoding аргумент пары "имя-значение", подбирая модель. Когда вы не задаете контрасты, fitlme использует 'reference' контраст по умолчанию. Поскольку модель имеет прерывание, fitlme берет первую область, NE, как ссылка и создает восемь фиктивных переменных, представляющих другие восемь областей. Например, I[MidAtl] фиктивная переменная, представляющая область MidAtl. Для получения дополнительной информации смотрите Фиктивные Переменные.

Соответствующая модель

yim=β0+β1I[MidAtl]i+β2I[ENCentral]i+β3I[WNCentral]i+β4I[SAtl]i+β5I[ESCentral]i+β6I[WSCentral]i+β7I[Mtn]i+β8I[Pac]i+b0m+εim,m=1,2,...,52,

где yim наблюдение i для уровня m из сгруппированной переменной Date, βj, j = 0, 1..., 8, коэффициенты фиксированных эффектов, с β0 будучи коэффициентом для области NE. b0m случайный эффект для уровня m из сгруппированной переменной Date, и εim ошибка наблюдения для наблюдения i. Случайный эффект имеет предшествующее распределение, b0mN(0,σb2) и остаточный член имеет распределение, εimN(0,σ2).

lme = fitlme(flu2,'FluRate ~ 1 + Region + (1|Date)')
lme = 
Linear mixed-effects model fit by ML

Model information:
    Number of observations             468
    Fixed effects coefficients           9
    Random effects coefficients         52
    Covariance parameters                2

Formula:
    FluRate ~ 1 + Region + (1 | Date)

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    318.71    364.35    -148.36          296.71  

Fixed effects coefficients (95% CIs):
    Name                        Estimate    SE          tStat      DF 
    {'(Intercept)'     }          1.2233    0.096678     12.654    459
    {'Region_MidAtl'   }        0.010192    0.052221    0.19518    459
    {'Region_ENCentral'}        0.051923    0.052221     0.9943    459
    {'Region_WNCentral'}         0.23687    0.052221     4.5359    459
    {'Region_SAtl'     }        0.075481    0.052221     1.4454    459
    {'Region_ESCentral'}         0.33917    0.052221      6.495    459
    {'Region_WSCentral'}           0.069    0.052221     1.3213    459
    {'Region_Mtn'      }        0.046673    0.052221    0.89377    459
    {'Region_Pac'      }        -0.16013    0.052221    -3.0665    459


    pValue        Lower        Upper    
     1.085e-31       1.0334       1.4133
       0.84534    -0.092429      0.11281
        0.3206    -0.050698      0.15454
    7.3324e-06      0.13424      0.33949
       0.14902     -0.02714       0.1781
    2.1623e-10      0.23655      0.44179
       0.18705    -0.033621      0.17162
       0.37191    -0.055948      0.14929
     0.0022936     -0.26276    -0.057514

Random effects covariance parameters (95% CIs):
Group: Date (52 Levels)
    Name1                  Name2                  Type           Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std'}        0.6443  


    Lower     Upper  
    0.5297    0.78368

Group: Error
    Name               Estimate    Lower      Upper
    {'Res Std'}        0.26627     0.24878    0.285

p- значения 7.3324e-06 и 2.1623e-10 соответственно показывают что фиксированные эффекты уровней гриппа в областях WNCentral и ESCentral существенно отличаются относительно уровней гриппа в области NE.

Пределы достоверности для стандартного отклонения термина случайных эффектов, σb, не включайте 0 (0.5297, 0.78368), который указывает, что термин случайных эффектов является значительным. Можно также протестировать значение условий случайных эффектов с помощью compare метод.

Условное выражение соответствовало, ответ из модели при данном наблюдении включает вклады от фиксированных и случайных эффектов. Например, предполагаемый лучше всего линейный несмещенный предиктор (BLUP) уровня гриппа для области WNCentral на неделе 10/9/2005

yˆWNCentral,10/9/2005=βˆ0+βˆ3I[WNCentral]+bˆ10/9/2005=1.2233+0.23687-0.1718=1.28837.

Это - подходящий условный ответ, поскольку он включает вклады в оценку и от фиксированных и от случайных эффектов. Можно вычислить это значение можно следующим образом.

beta = fixedEffects(lme);
[~,~,STATS] = randomEffects(lme); % Compute the random-effects statistics (STATS)
STATS.Level = nominal(STATS.Level);
y_hat = beta(1) + beta(4) + STATS.Estimate(STATS.Level=='10/9/2005')
y_hat = 1.2884

В предыдущем вычислении, beta(1) соответствует оценке для β0 и beta(4) соответствует оценке для β3. Можно просто отобразить подходящее значение с помощью fitted метод.

F = fitted(lme);
F(flu2.Date == '10/9/2005' & flu2.Region == 'WNCentral')
ans = 1.2884

Предполагаемый крайний ответ для области WNCentral на неделе 10/9/2005

yˆWNCentral,10/9/2005(marginal)=βˆ0+βˆ3I[WNCentral]=1.2233+0.23687=1.46017.

Вычислите подходящий крайний ответ.

F = fitted(lme,'Conditional',false);
F(flu2.Date == '10/9/2005' & flu2.Region == 'WNCentral')
ans = 1.4602

Загрузите выборочные данные.

load(fullfile(matlabroot,'examples','stats','weight.mat'));

weight содержит данные из продольного исследования, где 20 предметов случайным образом присвоены 4 программам подготовки, и их потеря веса зарегистрирована более чем шесть 2-недельных периодов времени. Это - симулированные данные.

Храните данные в таблице. Задайте Subject и Program как категориальные переменные.

tbl = table(InitialWeight,Program,Subject,Week,y);
tbl.Subject = nominal(tbl.Subject);
tbl.Program = nominal(tbl.Program);

Подбирайте линейную модель смешанных эффектов, где начальный вес, тип программы, неделя и взаимодействие между неделей и типом программы являются фиксированными эффектами. Прерывание и неделя варьируется предметом.

lme = fitlme(tbl,'y ~ InitialWeight + Program*Week + (Week|Subject)');

Вычислите подходящие значения и необработанные остаточные значения.

F = fitted(lme);
R = residuals(lme);

Постройте остаточные значения по сравнению с подходящими значениями.

plot(F,R,'bx')
xlabel('Fitted Values')
ylabel('Residuals')

Теперь постройте остаточные значения по сравнению с подходящими значениями, сгруппированными программой.

figure()
gscatter(F,R,Program)

Больше о

развернуть все

Смотрите также

| |

Для просмотра документации необходимо авторизоваться на сайте