Полные и неполные эллиптические интегралы третьего вида
ellipticPi( возвращает полный эллиптический интеграл третьего вида.n,m)
ellipticPi( возвращает неполный эллиптический интеграл третьего вида.n,phi,m)
Вычислите неполные эллиптические интегралы третьего вида для этих чисел. Поскольку эти числа не являются символьными объектами, вы получаете результаты с плавающей точкой.
s = [ellipticPi(-2.3, pi/4, 0), ellipticPi(1/3, pi/3, 1/2),... ellipticPi(-1, 0, 1), ellipticPi(2, pi/6, 2)]
s =
0.5877 1.2850 0 0.7507Вычислите неполные эллиптические интегралы третьего вида для тех же чисел, преобразованных в символьные объекты. Для большинства символьных (точных) чисел, ellipticPi отвечает на неразрешенные символьные звонки.
s = [ellipticPi(-2.3, sym(pi/4), 0), ellipticPi(sym(1/3), pi/3, 1/2),... ellipticPi(-1, sym(0), 1), ellipticPi(2, pi/6, sym(2))]
s = [ ellipticPi(-23/10, pi/4, 0), ellipticPi(1/3, pi/3, 1/2),... 0, (2^(1/2)*3^(1/2))/2 - ellipticE(pi/6, 2)]
Здесь, ellipticE представляет неполный эллиптический интеграл второго вида.
Используйте vpa аппроксимировать этот результат числами с плавающей запятой:
vpa(s, 10)
ans = [ 0.5876852228, 1.285032276, 0, 0.7507322117]
Дифференцируйте эти выражения, включающие полный эллиптический интеграл третьего вида:
syms n m diff(ellipticPi(n, m), n) diff(ellipticPi(n, m), m)
ans = ellipticK(m)/(2*n*(n - 1)) + ellipticE(m)/(2*(m - n)*(n - 1)) -... (ellipticPi(n, m)*(- n^2 + m))/(2*n*(m - n)*(n - 1)) ans = - ellipticPi(n, m)/(2*(m - n)) - ellipticE(m)/(2*(m - n)*(m - 1))
Здесь, ellipticK и ellipticE представляйте полные эллиптические интегралы первых и вторых видов.
Вызовите ellipticPi для скаляра и матрицы. Когда один входной параметр является матрицей, ellipticPi расширяет скалярный аргумент до матрицы, одного размера со всеми ее элементами, равными скаляру.
ellipticPi(sym(0), sym([1/3 1; 1/2 0]))
ans = [ ellipticK(1/3), Inf] [ ellipticK(1/2), pi/2]
Здесь, ellipticK представляет полный эллиптический интеграл первого вида.
ellipticPi возвращает результаты с плавающей точкой для числовых аргументов, которые не являются символьными объектами.
Для большинства символьных (точных) чисел, ellipticPi отвечает на неразрешенные символьные звонки. Можно аппроксимировать такие результаты числами с плавающей запятой с помощью vpa.
Все нескалярные аргументы должны иметь тот же размер. Если один или два входных параметра являются нескалярными, то ellipticPi расширяет скаляры в векторы или матрицы одного размера с нескалярными аргументами, со всеми элементами, равными соответствующему скаляру.
ellipticPi(n, pi/2, m) = ellipticPi(n, m).
[1] Милн-Томсон, L. M. “Эллиптические интегралы”. Руководство Математических функций с Формулами, Графиками и Математическими Таблицами. (М. Абрамовиц и я. А. Стегун, редакторы). Нью-Йорк: Дувр, 1972.
ellipke | ellipticCE | ellipticCK | ellipticCPi | ellipticE | ellipticF | ellipticK | vpa