Начало работы с Deep Learning Toolbox

Спроектируйте, обучите и анализируйте нейронные сети для глубокого обучения

Deep Learning Toolbox™ служит основой для разработки и реализации глубоких нейронных сетей, включая алгоритмы, предварительно обученные модели и приложения. Можно использовать сверточные нейронные сети (ConvNets, CNNs) и сети долгой краткосрочной памяти (LSTM) для решения задач классификации и регрессии на изображениях, временных рядах и текстах. Можно создать сетевые архитектуры, такие как порождающие соперничающие сети (GANs) и сиамские сети с помощью автоматического дифференцирования, пользовательских учебных циклов и совместно использованных весов. С приложением Deep Network Designer можно спроектировать, анализировать и обучить нейронные сети графически. Приложение Experiment Manager помогает вам справиться с несколькими экспериментами глубокого обучения, отслеживать учебные параметры, анализировать результаты и сравнить код из различных экспериментов. Можно визуализировать активации слоя и графически контролировать процесс обучения.

Можно обмениваться моделями с TensorFlow™ и PyTorch через формат ONNX™ и импортировать модели из TensorFlow-Keras и Caffe. Тулбокс поддерживает передачу обучения с даркнетом 53, ResNet-50, NASNet, SqueezeNet и много других предварительно обученных моделей.

Можно ускорить обучение на рабочей станции с одним или несколькими графическими процессорами (с Parallel Computing Toolbox™) или масштабировать до кластеров и облаков, включая NVIDIA®   Облако графического процессора и Amazon EC2®   GPU инстансы (с MATLAB® Parallel Server™).

Примеры

Мелкие сети

Рекомендуемые примеры

Дистанционное обучение

Глубокое обучение Onramp
Этот свободный, двухчасовой пример по глубокому обучению обеспечивает интерактивное введение в практические методы глубокого обучения. Вы будете учиться использовать методы глубокого обучения в MATLAB для распознавания изображений.

Видео

В интерактивном режиме измените нейронную сеть для глубокого обучения для передачи обучения
Deep Network Designer является инструментом "укажи и выбери" для создания или изменения глубоких нейронных сетей. Это видео показывает, как использовать приложение в рабочем процессе передачи обучения. Это демонстрирует простоту, с которой можно использовать инструмент, чтобы изменить последние несколько слоев в импортированной сети в противоположность изменению слоев в командной строке. Можно проверить модифицированную архитектуру на наличие ошибок в связях и присвоениях свойства с помощью сетевого анализатора.

Глубокое обучение для MATLAB: глубокое обучение в 11 линиях кода MATLAB
Смотрите, как использовать MATLAB, простую веб-камеру и глубокую нейронную сеть, чтобы идентифицировать объекты в вашей среде.

Глубокое обучение для MATLAB: передача обучения в 10 линиях кода MATLAB
Узнать, как использовать передачу обучения в MATLAB, чтобы переобучить нейронные сети для глубокого обучения, созданные экспертами для ваших собственных данных или задачи.

Для просмотра документации необходимо авторизоваться на сайте