Сгенерируйте или постройте разложение отклонения ошибки прогноза (FEVD) модели ARMA
armafevd функция возвращает или строит разложение отклонения ошибки прогноза переменных в одномерном или векторном (многомерном) авторегрессивном скользящем среднем значении (ARMA или VARMA) модель, заданная массивами коэффициентов или полиномов оператора задержки.
В качестве альтернативы можно возвратить FEVD из полностью заданный (например, оцененный) объект модели при помощи функции в этой таблице.
FEVD предоставляет информацию об относительной важности каждых инноваций во влиянии на отклонение ошибки прогноза всех переменных в системе. В отличие от этого функция импульсной характеристики (IRF) прослеживает эффекты инновационного шока для одной переменной на ответе всех переменных в системе. Чтобы оценить IRFs одномерных или многомерных моделей ARMA, смотрите armairf.
armafevd( графики, в отдельных фигурах, FEVD ar0,ma0)numVars переменные временных рядов, которые составляют ARMA (p, q) модель, с авторегрессивным (AR) и коэффициенты скользящего среднего значения (MA) ar0 и ma0, соответственно. Каждая фигура соответствует переменной и содержит numVars линейные графики. Линейные графики являются FEVDs той переменной по горизонту прогноза, следование из инновационного шока с одним стандартным отклонением применилось ко всем переменным в системе во время 0.
armafevd функция:
Принимает векторы или векторы ячейки матриц в обозначении разностного уравнения
Принимает LagOp изолируйте полиномы оператора, соответствующие AR и полиномам MA в обозначении оператора задержки
Размещает модели временных рядов, которые являются одномерными или многомерными, стационарными или интегрированными, структурными или в уменьшаемой форме, и обратимыми или необратимыми
Принимает, что постоянный c модели 0
armafevd( строит ar0,ma0,Name,Value)numVars FEVDs с дополнительными опциями, заданными одним или несколькими аргументами пары "имя-значение". Например, 'NumObs',10,'Method',"generalized" задает горизонт прогноза с 10 периодами и оценку обобщенного FEVD.
armafevd(
графики к осям заданы в ax,___)ax вместо осей в последних данных. Опция ax может предшествовать любой из комбинаций входных аргументов в предыдущих синтаксисах.
Размещать структурный ARMA (p, q) модели, LagOp предоставления изолируйте полиномы оператора для входных параметров ar0 и ma0. Задавать структурный коэффициент, когда вы вызываете LagOp, установите соответствующую задержку на 0 при помощи 'Lags' аргумент пары "имя-значение".
Для ортогонализируемого многомерного FEVDs расположите переменные согласно Wold causal ordering [3]:
Первая переменная (соответствие первой строке и столбцу обоих ar0 и ma0) скорее всего, окажет мгновенное влияние (t = 0) на всех других переменных.
Вторая переменная (соответствие второй строке и столбцу обоих ar0 и ma0) скорее всего, окажет мгновенное влияние на остающиеся переменные, но не первую переменную.
В общем случае переменная j (соответствующий строке j и столбец j обоих ar0 и ma0) наиболее вероятное должно оказать мгновенное влияние на последний numVars – переменные j, но не предыдущие переменные j - 1.
armafevd FEVDs графиков только, когда это не возвращает выходных аргументов или h.
Если Method "orthogonalized", затем armafevd ортогонализирует инновационные шоки путем применения факторизации Холесского инновационной ковариационной матрицы InnovCov. Ковариация ортогонализируемых инновационных шоков является единичной матрицей и FEVD каждой переменной суммы одной, то есть, сумма вдоль любой строки Y тот. Поэтому ортогонализируемый FEVD представляет пропорцию отклонения ошибки прогноза, относящегося к различным шокам в системе. Однако ортогонализируемый FEVD обычно зависит от порядка переменных.
Если Method "generalized"затем:
Получившийся FEVD является инвариантным к порядку переменных.
Получившийся FEVD не основан на ортогональном преобразовании.
Получившийся FEVD переменной суммирует к одному единственному когда InnovCov диагональный [4].
Поэтому обобщенный FEVD представляет вклад в отклонение ошибки прогноза мудрых уравнением шоков для переменных в системе.
Если InnovCov диагональная матрица, затем получившиеся обобщенные и ортогонализируемые FEVDs идентичны. В противном случае получившиеся обобщенные и ортогонализируемые FEVDs идентичны только, когда первая переменная потрясает все переменные (другими словами, все остальное являющееся тем же самым, оба метода дают к тому же значению Y(:,1,:)).
[1] Гамильтон, J. D. Анализ Временных Рядов. Принстон, NJ: Издательство Принстонского университета, 1994.
[2] Lütkepohl, H. "Асимптотические Распределения Функций Импульсной характеристики и Разложения Отклонения Ошибки прогноза Векторных Авторегрессивных Моделей". Анализ Экономики и Статистики. Издание 72, 1990, стр 116–125.
[3] Lütkepohl, H. Новое введение в несколько анализ временных рядов. Нью-Йорк, Нью-Йорк: Springer-Verlag, 2007.
[4] Pesaran, H. H. и И. Шин. "Обобщенный Анализ Импульсной характеристики в Линейных Многомерных Моделях". Экономические Буквы. Издание 58, 1998, стр 17–29.