Теплообменник для систем с газом и управляемыми потоками
Simscape / Жидкости / Интерфейсы Гидросистемы / Теплообменники
Блок Heat Exchanger (G) моделирует дополнительное охлаждение и нагревание жидкостей, сохраненных кратко в тепловом контакте через тонкую проводящую стенку. По крайней мере одна из жидкостей является одной фазой — газ. Эта жидкость не может переключить фазу и так, когда скрытое тепло никогда не выделяется, обмен является строго одним из разумного тепла. Вторая жидкость является управляемым видом — не часть жидкой области, но вместо этого смоделированный с физическими сигналами и тепловым портом.
Модель теплопередачи зависит от выбора варианта блока. Блок имеет два варианта: E-NTU Model
и Simple Model
. Щелкните правой кнопкой по блоку, чтобы открыть его контекстно-зависимое меню и выбрать Simscape> Block Choices, чтобы изменить вариант.
E-NTU Model
Вариант по умолчанию. Его модель теплопередачи выводит из метода NTU эффективности. Теплопередача в устойчивом состоянии затем продолжает в части идеального уровня, который потоки, если сохранено каждый при его входной температуре, и, если очищено от каждого теплового промежуточного сопротивления, мог в поддержке теории:
где закон о Q фактический уровень теплопередачи, Q, Max является идеальным уровнем теплопередачи и ε, является частью идеального уровня, на самом деле наблюдаемого в действительном теплообменнике, обремененном потерями. Часть является эффективностью теплообменника, и это - функция количества модулей передачи, или NTU, мера простоты, с которой тепло перемещается между потоками относительно простоты, с которой потоки поглощают то тепло:
где часть является полной тепловой проводимостью между потоками, и Min C является самым маленьким из уровней теплоемкости из числа потоков — что, принадлежа потоку, наименее способному к поглощению тепла. Уровень теплоемкости потока зависит от удельной теплоемкости жидкости (c p) и на его массовом расходе жидкости через обменник ():
Эффективность зависит также от относительного расположения потоков, количества передач между ними и смесительного условия для каждого. Эта зависимость отражается в используемом выражении эффективности с различными расположениями потока, соответствующими различным выражениям. Для списка выражений эффективности смотрите блок E-NTU Heat Transfer.
Используйте параметры блоков Flow arrangement, чтобы установить, как потоки встречаются в теплообменнике. Потоки могут идти параллельно друг другу, друг в противоречии с другом, или друг через друга. Они могут также запуститься в герметичном интерпретаторе, одном через трубы, заключенные в интерпретатор, другой вокруг тех тех же труб. Рисунок показывает пример. Поток трубы может сделать одну передачу через поток интерпретатора (показанной право) или, для большей эффективности обменника, несколько передач (слева).
Другие расположения потока возможны посредством типовой параметризации на основе сведенных в таблицу данных об эффективности и требующий небольшой детали о теплообменнике. Расположение потока, смешивая условие и количество передач интерпретатора или трубы, при необходимости к теплообменнику, принято, чтобы проявить в табличных данных.
Используйте параметр Cross flow type, чтобы смешать каждый из потоков, один из потоков или ни один из потоков. Смешивание в этом контексте является поперечным движением жидкости в каналах, которые не имеют никаких внутренних барьеров, обычно руководства, экраны, пластины или стенки. Такое перемещение служит, чтобы выровнять температурные изменения поперечной плоскости. Смешанные потоки имеют переменную температуру в одной только продольной плоскости. Несмешанные потоки имеют переменную температуру и в поперечных и в продольных плоскостях. Рисунок показывает смешанный поток (i) и несмешанный поток (ii).
Различие между смешанными и несмешанными потоками рассматривается только в перекрестных расположениях потока. Там, продольное температурное изменение одной жидкости производит поперечное температурное изменение второй жидкости, которую может выровнять смешивание. Во встречных и параллельных расположениях потока продольное температурное изменение одной жидкости производит продольное температурное изменение второй жидкости и смешивание, как это имеет мало эффекта здесь, проигнорирован.
Обменники Shell-и-трубы с несколькими передачами (iv.b-e в фигуре для 2, 3, и 4 передачами) являются самыми эффективными. Из обменников с одной передачей те со встречными потоками (ii являются самыми эффективными и те с параллельными потоками (i), меньше всего.
Обменники поперечного течения являются промежуточными в эффективности со смешиванием условия, проигрывая фактор. Они являются самыми эффективными, когда оба потока являются несмешанными (iii.a) и наименее эффективными, когда оба потока смешаны (iii.b). При смешивании только потока с самым маленьким уровнем теплоемкости (iii.c) понижает эффективность больше, чем смешивание только потока с самым большим уровнем теплоемкости (iii.d).
Полное тепловое сопротивление, R, является суммой локальных сопротивлений, выравнивающих путь к теплопередаче. Локальные сопротивления являются результатом конвекции в поверхностях стенки, проводимости через стенку, и, если стенные стороны загрязнены, проводимость через слои загрязнения. Выраженный в порядке от газовой стороны (индекс 1) управляемой жидкой стороне (индекс 2):
где U является конвективным коэффициентом теплопередачи, F является загрязняющимся фактором и A, Th является площадью поверхности теплопередачи, каждым для потока, обозначенного в индексе. R W является тепловым сопротивлением стенки.
Стенка тепловое сопротивление и загрязняющиеся факторы является простыми константами, полученными из параметров блоков. Коэффициенты теплопередачи являются тщательно продуманными функциями свойств жидкости, геометрии потока и стенного трения, и выводят из стандартных эмпирических корреляций между Рейнольдсом, Nusselt и числами Прандтля. Корреляции зависят от расположения потока и смешивания условия, и детализированы для каждого в блоке E-NTU Heat Transfer на который E-NTU Model
вариант базируется.
E-NTU Model
вариантом является составной компонент, созданный из более простых блоков. Блок Heat Exchanger Interface (G) моделирует поток газа. Физические сигналы для уровня теплоемкости и коэффициента теплопередачи, наряду с тепловым портом для температуры, получают управляемый поток. Блок E-NTU Heat Transfer моделирует тепло, которым обмениваются через стенку между потоками. Рисунок показывает связи блока для E-NTU Model
вариант блока.
Simple Model
Альтернативный вариант. Ее модель теплопередачи зависит от концепции определенного рассеяния, мера уровня теплопередачи наблюдала, когда газ и контролировал жидкие входные температуры, отличаются одной степенью. Его продукт с входным перепадом температур дает ожидаемый уровень теплопередачи:
где ξ является определенным рассеянием, и T Во вставляется температура для газа (индекс 1
) или управляемая жидкость (индекс 2
). Определенное рассеяние является сведенной в таблицу функцией массовых расходов жидкости в обменник через газ и управляло жидкими входами:
Чтобы разместить обратные течения, табличные данные могут расширить по положительным и отрицательным скоростям потока жидкости, в этом случае входы могут также считаться выходами. Данные обычно выводят из измерения уровня теплопередачи против температуры в действительном прототипе:
Модель теплопередачи, когда это полагается почти полностью на табличные данные, и как те данные обычно, выводит из эксперимента, требует небольшой детали об обменнике. Расположение потока, смешивая условие и количество передач интерпретатора или трубы, при необходимости к смоделированному теплообменнику, принято, чтобы проявить полностью в табличных данных.
Simple Model
вариантом является составной компонент. Блок Simple Heat Exchanger Interface (G) моделирует поток газа. Физические сигналы для коэффициента теплопередачи и массового расхода жидкости, наряду с тепловым портом для температуры, получают управляемый поток. Блок Specific Dissipation Heat Transfer моделирует тепло, которым обмениваются через стенку между потоками.
E-NTU Heat Transfer | Heat Exchanger Interface (G) | Simple Heat Exchanger Interface (G) | Specific Dissipation Heat Transfer