Ограничение потока фиксированной области смоделировано на ISO 6358
Simscape / Жидкости / Газ / Valves & Orifices
Блок Orifice ISO 6358 (G) моделирует падение давления, понесенное в газовой сети из-за чисто резистивного элемента фиксированного размера — такого как ограничение потока, отверстие или клапан — использование методов, обрисованных в общих чертах в стандарте ISO 6358. Эти методы широко используются в промышленности в измерении и создании отчетов характеристик потока газа. Доступность данных по коэффициентам формул ISO делает параметризацию ISO полезной, когда конфигурации компонента являются недоступными или громоздкими, чтобы задать.
Параметризация отверстия по умолчанию основана на наиболее рекомендуемом из методов ISO 6358: один на основе проводимости звука резистивного элемента в устойчивом состоянии. Проводимость звука измеряет простоту, с которой газ может течь, когда дросселируется, условие, в котором скорость потока в ее теоретическом максимуме (локальная скорость звука). Дросселирование появляется, когда отношение между нисходящими и восходящими давлениями достигает критического значения, известного как критическое отношение давления
Остающаяся параметризация формулируется в терминах альтернативных мер пропускной способности: коэффициент потока (или в его форм, C v или в K v) или размер ограничения потока. Коэффициент потока измеряет простоту, с которой газ может течь, когда управляется определенным перепадом давления. Определение C v отличается от того из K v в стандартном давлении и температуре, установленном в его измерении и в физических единицах измерения, используемых в его выражении:
C v измеряется при общепринятой температуре 60°F
и перепад давления 1 PSI
; это выражается в имперских модулях US gpm
. Это - коэффициент потока, используемый в модели, когда параметры блоков Orifice parameterization установлены в Cv coefficient (USCS)
.
K v измеряется при общепринятой температуре 15°C
и перепад давления 1 bar
; это выражается в метрических модулях m^3/h
. Это - коэффициент потока, используемый в модели, когда параметры блоков Orifice parameterization установлены в Kv coefficient (SI)
.
Объем жидкости в резистивном элементе, и поэтому масса того же самого, приняты, чтобы очень быть малыми, и это, для моделирования целей, проигнорированных. В результате никакое количество жидкости не может накопиться там. По принципу сохранения массы массовый расход жидкости в клапан через один порт должен равняться расходу из клапана через другой порт:
где задан как массовый расход жидкости в клапан через порт, обозначенный индексом (A или B).
Причины падения давления, понесенного в проходах резистивного элемента, проигнорированы в блоке. Безотносительно их характера — внезапных изменений сечения, искривлений линии потока — только их совокупный эффект рассматривается во время моделирования. Именно этот совокупный эффект проводимость звука в параметризации отверстия по умолчанию получает в модели. Если различная параметризация выбрана, коэффициенты, на которых она базируется, преобразованы в параметры параметризации по умолчанию; вычисление массового расхода жидкости затем выполняется как описано в Параметризации Проводимости звука.
В дросселируемом потоке массовый расход жидкости через резистивный элемент вычисляется как:
где:
C является проводимостью звука в резистивном элементе.
ρ является плотностью газа, здесь при стандартных условиях (индекс 0
, 1.185 kg/m^3
).
p является абсолютным давлением газа, здесь соответствуя входу (in
).
T является температурой газа во входе (индекс in
) или при стандартных условиях (индекс 0
, 293.15 K
).
В дозвуковом и турбулентном течении вычисление массового расхода жидкости становится:
где:
p r является отношением между нисходящим давлением (p) и восходящим давлением (p в) (каждый измерился против абсолютного нуля):
b cr является критическим отношением давления, в котором поток газа сначала начинает дросселировать.
m является дозвуковым индексом, эмпирический коэффициент, используемый, чтобы более точно охарактеризовать поведение дозвуковых потоков.
В дозвуковом и ламинарном течении вычисление массового расхода жидкости превращается на:
где бегство b является критическим отношением давления, при котором происходит смена ламинарного на турбулентный режим течения. Объединение вычислений для этих трех режимов течения в кусочно-линейную функцию дает через все отношения давления:
Если параметризация отверстия установлена в Cv coefficient (USCS)
, параметры вычисления массового расхода жидкости устанавливаются можно следующим образом:
Sonic conductance: C = 4E-8 * C v м^3 / (s*Pa)
Critical pressure ratio: b cr = 0.3
Subsonic index: m = 0.5
Если Kv coefficient (SI)
параметризация используется:
Sonic conductance: C = 4.78E-8 * K v м^3 / (s*Pa)
Critical pressure ratio: b cr = 0.3
Subsonic index: m = 0.5
Для Restriction area
параметризация:
Sonic conductance: C = 0.128 * 4 S R/π L / (s*bar), где S является площадью потока в резистивном элементе (индекс R
).
Critical pressure ratio: b cr = 0.41 + 0.272 (S R/SP) ^0.25
Subsonic index: m = 0.5
Резистивный элемент моделируется как адиабатический компонент. Никакой теплообмен не может находиться между жидкостью и стенкой, которая окружает ее. Никакой работы не происходит над или жидкостью, как это протекает от входного отверстия до выхода. С этими предположениями энергия может течь адвекцией только через порты А и B. По принципу сохранения энергии сумма энергетических потоков в портах должна затем всегда равняться нулю:
где ϕ задан как энергетическая скорость потока жидкости в клапан через один из портов (A или B).
[1] P. Венчик, пневматические диски, Springer-Verlag Берлин Гейдельберг, 2007.