tfsmoment

Условный спектральный момент плотности распределения времени сигнала

Описание

Моменты частоты времени обеспечивают эффективный способ охарактеризовать сигналы, частоты которых изменение вовремя (то есть, являются неустановившимися). Такие сигналы могут явиться результатом машинного оборудования с ухудшенным или неисправным оборудованием. Классический анализ Фурье не может получить изменяющееся во времени поведение частоты. Плотность распределения времени, сгенерированная кратковременным преобразованием Фурье (STFT) или другими методами частотно-временного анализа, может получить изменяющееся во времени поведение, но непосредственно обрабатывающий эти распределения как функции несет высокую вычислительную нагрузку, и потенциально вводит несвязанные и нежелательные характеристики функции. В отличие от этого дистилляция результатов плотности распределения времени в моменты частоты времени низкой размерности предоставляет метод для получения существенных особенностей сигнала в намного меньшем блоке данных. Используя эти моменты значительно уменьшает вычислительную нагрузку для извлечения признаков и сравнения — ключевое преимущество для работы в режиме реального времени [1], [2].

Predictive Maintenance Toolbox™ реализует три ветви момента частоты времени:

  • Условный спектральный момент — tfsmoment

  • Условный временный момент — tftmoment

  • Объединенный момент частоты времени — tfmoment

пример

momentS = tfsmoment(xt,order) возвращает условный спектральный момент timetable xt как timetable. momentS переменные обеспечивают спектральные моменты для порядков, которые вы задаете в order. Данные в xt может быть неоднородно произведен.

пример

momentS = tfsmoment(x,fs,order) возвращает условный спектральный момент вектора timeseries x, произведенный на уровне Fs. Момент возвращен как матрица, в которой каждый столбец представляет спектральный момент, соответствующий каждый элемент в order. С этим синтаксисом, x должен быть однородно произведен.

пример

momentS = tfsmoment(x,ts,order) возвращает условный спектральный момент x произведенный в то время, когда моменты заданы ts в секундах.

  • Если ts скалярный duration, затем tfsmoment применяет его однородно ко всем выборкам.

  • Если ts вектор, затем tfsmoment применяет каждый элемент к соответствующей выборке в x. Используйте этот синтаксис в неоднородной выборке.

пример

momentS = tfsmoment(p,fp,tp,order) возвращает условный спектральный момент сигнала, спектрограммой степени которого является pfp содержит частоты, соответствующие спектральной оценке, содержавшейся в p. tp содержит вектор моментов времени, соответствуя центрам использованных для расчета кратковременных оценок спектра мощности оконных сегментов. Используйте этот синтаксис когда:

  • У вас уже есть спектр мощности или спектрограмма, которую вы хотите использовать.

  • Вы хотите настроить опции для pspectrum, вместо того, чтобы принимать pspectrum по умолчанию опции, что tfsmoment применяется. Используйте pspectrum сначала с опциями вы хотите, и затем используете выход p как введено для tfsmoment. Этот подход также позволяет вам строить спектрограмму степени.

пример

momentS = tfsmoment(___,Name,Value) задает аргументы пары "имя-значение" использования дополнительных свойств. Опции включают централизацию момента и спецификацию предела частоты.

Можно использовать Name,Value с любой из комбинаций входных аргументов в предыдущих синтаксисах.

пример

[momentS,t] = tfsmoment(___) возвращает временной вектор t.

Можно использовать t с любой из комбинаций входных аргументов в предыдущих синтаксисах.

пример

tfsmoment(___) без выходных аргументов строит условный спектральный момент. Ось X графика время, и ось Y графика является соответствующим спектральным моментом.

Можно использовать этот синтаксис с любой из комбинаций входных аргументов в предыдущих синтаксисах.

Примеры

свернуть все

Постройте условный спектральный момент второго порядка (отклонение) временных рядов с помощью подхода только для графика и подхода возвращаться-данных. Визуализируйте момент по-другому путем графического вывода гистограммы. Сравните моменты для данных, являющихся результатом дефектных и здоровых условий машины.

Этот пример адаптируется от Диагностики отказа Подшипника качения, которая обеспечивает более всестороннюю обработку источников данных и истории.

Загрузите данные, которые содержат измерения вибрации для двух условий. x_inner1 и sr_inner1 содержите вектор данных и частоту дискретизации для дефектного условия. x_baseline и sr_baseline содержите вектор данных и частоту дискретизации для здорового условия.

load tfmoment_data.mat x_inner1 sr_inner1 x_baseline1 sr_baseline1

Исследуйте данные дефектного условия. Создайте временной вектор из частоты дискретизации и отобразите данные на графике. Затем увеличьте масштаб к 0,1 разделам с так, чтобы поведение было видно более ясно.

t_inner1 = (0:length(x_inner1)-1)/sr_inner1; % Construct time vector of [0 1/sr 2/sr ...] matching dimension of x
figure
plot(t_inner1,x_inner1) 
title ('Inner1 Signal')
hold on
xlim([0 0.1]) % Zoom in to an 0.1 s section
hold off

График показывает периодические импульсивные изменения ускоряющих измерений в зависимости от времени.

Постройте второй спектральный момент (order=2), использование tfsmoment синтаксис без выходных аргументов.

order = 2;
figure
tfsmoment(x_inner1,t_inner1,order)
title('Second Spectral Moment of Inner1')

График иллюстрирует изменения в отклонении x_inner1 спектр в зависимости от времени. Вы ограничиваетесь этой визуализацией (момент по сравнению со временем) потому что tfsmoment возвращенный никакие данные. Теперь используйте tfmoment снова, чтобы вычислить второй спектральный момент, на этот раз с помощью синтаксиса, который возвращает и значения момента и связанный временной вектор. Можно использовать частоту дискретизации непосредственно в синтаксисе (sr_inner1), а не временной вектор вы создали (t_inner1).

[momentS_inner1,t1_inner1] = tfsmoment(x_inner1,sr_inner1,order);

Можно теперь построить момент по сравнению со временем, как вы сделали прежде, с помощью moment_inner1 и t1_inner1, тем же результатом как ранее. Но можно также выполнить дополнительный анализ и визуализацию вектора момента, начиная с tfsmoment возвращенный данные. Гистограмма может предоставить краткую информацию о характеристиках сигнала.

figure
histogram(momentS_inner1)
title('Second Spectral Moment of Inner1')

Самостоятельно, гистограмма не показывает очевидную информацию об отказе. Однако можно сравнить его с гистограммой, произведенной данными здорового условия.

Во-первых, сравните внутренние и базовые временные ряды непосредственно с помощью той же конструкции временного вектора в baseline1 данные как ранее для inner1 данные.

t_baseline1 = (0:length(x_baseline1)-1)/sr_baseline1;

figure
plot(t_inner1,x_inner1)
hold on
plot(t_baseline1,x_baseline1)
hold off
legend('Faulty Condition','Healthy Condition')
title('Vibration versus Time for Faulty and Healthy Conditions')

Вычислите второй спектральный момент baseline1 данные. Сравните baseline1 и inner1 истории времени.

[momentS_baseline1,t1_baseline1] = tfsmoment(x_baseline1,sr_baseline1,2);

figure
plot(t1_inner1,momentS_inner1)
hold on
plot(t1_baseline1,momentS_baseline1)
hold off
legend('Faulty Condition','Healthy Condition')
title('Second Spectral Moment versus Time for Faulty and Healthy Conditions')

График момента показывает поведение, отличающееся от более раннего графика вибрации. Данные о вибрации для дефектного случая являются намного более шумными со скачками более высокой величины, чем для здорового случая, несмотря на то, что оба, кажется, нулевое среднее значение. Однако спектральное отклонение (второй спектральный момент) значительно ниже для дефектного случая. Момент дефектного случая является еще более шумным, чем здоровый случай.

Постройте гистограммы.

figure
histogram(momentS_inner1);
hold on
histogram(momentS_baseline1);
hold off
legend('Faulty Condition','Healthy Condition')
title('Second Spectral Moment for Faulty and Healthy Conditions')

Поведения момента отличают дефектное условие от здорового условия в обоих графиках. Гистограмма обеспечивает отличные характеристики распределения — центральная точка вдоль оси X, распространения и пикового интервала гистограммы.

Определите первые четыре условных спектральных момента набора данных timeseries и извлеките моменты, которые вы хотите визуализировать с гистограммой.

Загрузите данные, которые содержат измерения вибрации (x_inner1) и частота дискретизации (sr_inner1) для машинного оборудования. Затем используйте tfsmoment вычислить первые четыре момента. Эти моменты представляют статистические количества: 1) Среднего значения; 2) Отклонения; 3) Скошенности; и 4) Эксцесса.

Можно задать указатели момента как вектор в order аргумент.

load tfmoment_data.mat x_inner1 sr_inner1
momentS_inner1 = tfsmoment(x_inner1,sr_inner1,[1 2 3 4]);

Сравните размерности входного вектора и выходной матрицы.

xsize = size(x_inner1)
xsize = 1×2

      146484           1

msize = size(momentS_inner1)
msize = 1×2

   524     4

Вектор данных x_inner значительно более длинно, чем векторы в матрице момента momentS_inner1 because the spectrogram computation produces optimally-sized lower-resolution time windows. In this case, tfsmoment возвращает матрицу момента, содержащую четыре столбца, один столбец для каждого порядка момента.

Постройте гистограммы для третьего (скошенность) и четвертый (эксцесс) моменты. Третьи и четвертые столбцы momentS_inner1 обеспечьте их.

momentS_3 = momentS_inner1(:,3);
momentS_4 = momentS_inner1(:,4);
figure
histogram(momentS_3)
title('Third Spectral Moment (Skewness) of x inner1')

figure
histogram(momentS_4)
title('Fourth Spectral Moment (Kurtosis) of x inner1')

Графики подобны, но у каждого есть некоторые уникальные характеристики относительно количества интервалов и наклонной крутизны.

По умолчанию, tfsmoment вызывает функциональный pspectrum внутренне сгенерировать спектрограмму степени что tfsmoment использование в настоящий момент расчет. Можно также импортировать существующую спектрограмму степени для tfsmoment использовать вместо этого. Эта возможность полезна, если у вас уже есть спектрограмма степени как начальная точка, или если вы хотите настроить pspectrum опции путем генерации спектрограммы явным образом сначала.

Введите спектрограмму степени, которая была сгенерирована с индивидуально настраиваемыми опциями. Сравните получившуюся гистограмму спектрального момента с той что tfsmoment генерирует использование его pspectrum опции по умолчанию.

Загрузите данные, которые включают два спектра мощности и связанную частоту и временные векторы.

p_inner1_def спектр был создан с помощью pspectrum по умолчанию опции. Это эквивалентно какой tfsmoment вычисляет внутренне, когда входной спектр не обеспечивается в синтаксисе.

p_inner1_MinThr спектр был создан с помощью MinThreshold pspectrum опция. Эта опция помещает нижнюю границу на ненулевые значения, чтобы отфильтровать низкоуровневый шум. В данном примере порог был установлен, чтобы отфильтровать шум ниже уровня на 0,5%.

load tfmoment_data.mat p_inner1_def f_p_def t_p_def ...
    p_inner1_MinThr f_p_MinThr t_p_MinThr
load tfmoment_data.mat x_inner1 x_baseline1

Определите вторые спектральные моменты (отклонение) для обоих случаев.

moment_p_def = tfsmoment(p_inner1_def,f_p_def,t_p_def,2);
moment_p_MinThr = tfsmoment(p_inner1_MinThr,f_p_MinThr,t_p_MinThr,2);

Постройте гистограммы вместе.

figure
histogram(moment_p_def);
hold on
histogram(moment_p_MinThr);
hold off
legend('Moment from Default P','Moment from Customized P')
title('Second Spectral Moment for Inner1 from Input Spectrograms')

Гистограммы имеют то же полное распространение, но пороговая гистограмма момента имеет более высокий пиковый интервал на более низком уровне величины момента, чем момент по умолчанию. Этот пример в целях рисунка только, но действительно показывает удар, что предварительная обработка на этапе расчета спектра может иметь.

По умолчанию, tfsmoment централизует момент как часть его вычисления. Таким образом, это вычитает среднее значение данных датчика (который является первым моментом) из данных о датчике как часть Условных Спектральных Моментов. Если вы хотите сохранить смещение, можно установить входной параметр Centralize к false.

Загрузите данные, которые содержат измерения вибрации x и частоту дискретизации сэр для машинного оборудования. Вычислите 2-й момент (order = 2) и с централизацией (значение по умолчанию), и без централизации (Centralize = false). Постройте гистограммы вместе.

load tfmoment_data.mat x_inner1 sr_inner1
momentS_centr = tfsmoment(x_inner1,sr_inner1,2);
momentS_nocentr = tfsmoment(x_inner1,sr_inner1,2,'Centralize',false);

figure
histogram(momentS_centr)
hold on
histogram(momentS_nocentr);
hold off
legend('Centralized','Noncentralized')
title('Second Spectral Moment of x inner1 With and Without Centralization')

Нецентрализованное распределение возмещено направо.

Реальные измерения часто стали группированные частью таблицы с меткой времени, которая записывает фактическое время и показания, а не относительные времена. Можно использовать timetable формат для того, чтобы собрать эти данные. В этом примере показано, как tfsmoment действует с a timetable введите, в отличие от входных параметров вектора данных, используемых в другом tfsmoment примеры, such as Постройте условный спектральный момент вектора временных рядов.

Загрузите данные, которые состоят из single timetable xt_inner1 содержа показания измерения и информацию времени для части машинного оборудования. Исследуйте свойства timetable.

load tfmoment_tdata.mat xt_inner1;
xt_inner1.Properties
ans = 
  TimetableProperties with properties:

             Description: ''
                UserData: []
          DimensionNames: {'Time'  'Variables'}
           VariableNames: {'x_inner1'}
    VariableDescriptions: {}
           VariableUnits: {}
      VariableContinuity: []
                RowTimes: [146484x1 duration]
               StartTime: 0 sec
              SampleRate: 4.8828e+04
                TimeStep: 2.048e-05 sec
        CustomProperties: No custom properties are set.
      Use addprop and rmprop to modify CustomProperties.

Эта таблица состоит из размерностей Time и Variables, где единственной переменной является x_inner1.

Найдите вторые и четвертые условные спектральные моменты для данных в timetable. Исследуйте свойства получившегося момента timetable.

order = [2 4];
momentS_xt_inner1 = tfsmoment(xt_inner1,order);
momentS_xt_inner1.Properties
ans = 
  TimetableProperties with properties:

             Description: ''
                UserData: []
          DimensionNames: {'Time'  'Variables'}
           VariableNames: {'CentralSpectralMoment2'  'CentralSpectralMoment4'}
    VariableDescriptions: {}
           VariableUnits: {}
      VariableContinuity: []
                RowTimes: [524x1 duration]
               StartTime: 0.011725 sec
              SampleRate: 175.6403
                TimeStep: 0.0056935 sec
        CustomProperties: No custom properties are set.
      Use addprop and rmprop to modify CustomProperties.

Возвращенный timetable представляет моменты в переменном 'CentralSpectralMoment2'и 'CentralSpectralMoment4', предоставляя информацию не только на том, какой определенный момент был вычислен, но и было ли это централизовано.

Можно получить доступ к информации времени и момента непосредственно от timetable свойства. Вычислите вторые и четвертые моменты. Постройте четвертый момент.

tt_inner1 = momentS_xt_inner1.Time;
momentS_inner1_2 = momentS_xt_inner1.CentralSpectralMoment2;
momentS_inner1_4 = momentS_xt_inner1.CentralSpectralMoment4;

figure
plot(tt_inner1,momentS_inner1_4)
title('Fourth Spectral Moment of Timetable Data')

Как проиллюстрирован в Графике Условный Спектральный Момент Вектора Временных рядов, гистограмма является очень полезной визуализацией для данных момента. Постройте гистограмму, непосредственно сославшись на CentralSpectralMoment2 переменное свойство.

figure
histogram(momentS_xt_inner1.CentralSpectralMoment2)
title('Second Spectral Moment of xt inner1 Timetable')

Входные параметры

свернуть все

Расписание сигнала, для который tfsmoment возвращает моменты в виде timetable это содержит одну переменную с отдельным столбцом. xt должен содержать увеличение, конечные времена строки. Если расписание имеет пропавших без вести или дублирующиеся моменты времени, можно зафиксировать его с помощью советов в Чистом Расписании с Пропавшими без вести, Копией, или Неоднородные Времена (MATLAB). xt может быть неоднородно произведен, с pspectrum ограничение, которое должны выполнить медиана временного интервала и средний временной интервал.

1100<  Медиана временного интервалаСредний  временной интервал<100.

Для примера входа расписания смотрите, Находят Условные Спектральные Моменты Измерений Данных в Расписании

Порядки момента возвратиться в виде одного из следующего:

  • Целое число — Вычисляет один момент

  • Вектор — Вычисляет несколько моментов целиком.

Пример: momentS = tfsmoment(x,2) задает спектральный момент второго порядка (отклонение) плотности распределения времени x.

Пример: momentS = tfsmoment(x,[1 2 3 4]) задает первые порядки с четырьмя моментами плотности распределения времени x.

Можно задать любой порядок и количество порядков, но моменты младшего разряда несут меньше вычислительной нагрузки и лучше подходят для приложений реального времени. Первые порядки с четырьмя моментами соответствуют статистическим моментам набора данных:

  1. Среднее значение

  2. Дисперсия

  3. Скошенность (степень асимметрии о среднем значении)

  4. Эксцесс (длина хвостов выброса в распределении — нормальное распределение имеет эксцесс 3),

Для примеров см.:

Timeseries сигнализирует от который tfsmoment возвращает моменты в виде вектора.

Для примера входа timeseries см. График Условный Спектральный Момент Вектора Временных рядов

Частота дискретизации xВ виде положительной скалярной величины в герц, когда x однородно производится.

Значения шага расчета в виде одного из следующего:

  • duration скаляр — временной интервал между последовательными выборками X.

  • Вектор, duration массив или datetime массив — момент времени или длительность, соответствующая каждому элементу x.

ts может быть неоднородным, с pspectrum ограничение, которое должны выполнить медиана временного интервала и средний временной интервал:

1100<  Медиана временного интервалаСредний  временной интервал<100.

Спектрограмма степени или спектр сигнала в виде матрицы (спектрограмма) или вектор-столбец (спектр). p содержит оценку краткосрочного, локализованного временем спектра мощности сигнала timeseries. Если вы задаете p, tfsmoment использование p вместо того, чтобы генерировать его собственную спектрограмму степени. Для примера смотрите Использование Индивидуально настраиваемая Спектрограмма Степени, чтобы Вычислить Условный Спектральный Момент.

Частоты для спектрограммы степени или спектра p когда p предоставляется явным образом tfsmomentВ виде вектора в герц. Длина fp должно быть равно количеству строк в p.

Информация времени для спектрограммы степени или спектра p когда p предоставляется явным образом tfsmomentВ виде одного из следующего:

  • Вектор моментов времени, тип данных которых может быть числовым, duration, или datetime. Длина векторного tp должно быть равно количеству столбцов в p.

  • duration скаляр, который представляет временной интервал в p. Скалярная форма tp может использоваться только когда p матрица спектрограммы степени.

  • Для особого случая, где p вектор-столбец (спектр мощности), tp может быть числовое, duration, или datetime скаляр, представляющий момент времени спектра.

Аргументы в виде пар имя-значение

Задайте дополнительные разделенные запятой пары Name,Value аргументы. Name имя аргумента и Value соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Пример: 'Centralize',false,'FrequencyLimits',[10 100] вычисляет нецентрализованный условный спектральный момент для фрагмента сигнала в пределах от 10 Гц к 100 Гц.

Опция централизовать-момента в виде разделенной запятой пары, состоящей из 'Centralize' и логическое.

  • Если Centralize true, затем tfsmoment возвращает централизованный условный момент путем вычитания условного среднего значения (который является первым моментом) в расчете.

  • Если Centralize false, затем tfsmoment возвращает нецентрализованный момент, сохраняя любое смещение данных.

Для примера смотрите, Вычисляют Условный Спектральный Момент, который не Централизован.

Пределы частоты, чтобы использовать в виде разделенной запятой пары, состоящей из 'FrequencyLimits' и двухэлементный вектор, содержащий нижние и верхние границы f1 и f2 в герц. Эта спецификация позволяет вам исключать полосу данных с обоих концов спектральной области значений.

Выходные аргументы

свернуть все

Условный спектральный момент, возвращенный как timetable или матрица.

Времена момента оценивают в секундах. t результаты работы с окнами времени, которую вычисляет внутренний расчет спектрограммы. Окна спектрограммы требуют разрешения меньшего количества времени, чем исходный демонстрационный вектор. Поэтому возвращенный t вектор более компактен, чем векторы входных данных, как momentS. Если информация времени была предоставлена частотой дискретизации или шагом расчета, t запускает с центра первого раза окно. Если информация времени была предоставлена в duration или datetime формат, t сохраняет смещение времени начала.

Больше о

свернуть все

Условные спектральные моменты

Условные спектральные моменты неустановившегося сигнала включают набор изменяющихся во времени параметров, которые характеризуют спектр сигнала, когда он развивается вовремя. Они связаны с условными временными моментами и объединенными моментами частоты времени. Условным спектральным моментом является интегральная функция частоты, учитывая время и предельное распределение. Условным временным моментом является интегральная функция времени, учитывая частоту и предельное распределение. Вычисление объединенного момента частоты времени является двойным интегралом, который варьируется и время и частота [1], [2].

Каждый момент сопоставлен с определенным порядком с первыми четырьмя порядками, являющимися статистическими свойствами 1) среднего значения, 2) отклонения, 3) скошенности и 4) эксцесса.

tfsmoment вычисляет условные спектральные моменты плотности распределения времени для x сигнала, для порядков, заданных в order. Функция выполняет эти шаги:

  1. Вычислите спектр мощности спектрограммы, P (t, f), входа с помощью pspectrum функция и использование это как плотность распределения времени. Если синтаксис использовал, предоставляет существующий P (t, f), то tfsmoment использование это вместо этого.

  2. Оцените условный спектральный момент ωmt из использования сигнала, для нецентрализованного случая:

    ωmt=1P(t)ωmP(t,ω)dω,

    где m является порядком, и P (t) является предельным распределением.

    В течение централизованного условного спектрального момента μωm(t), функциональное использование

    μωm(t)=1P(t)(ωω1t)mP(t,ω)dω.

Ссылки

[1] Loughlin, P. J. "Каковы моменты частоты времени сигнала?" Совершенствовались алгоритмы обработки сигналов, архитектуры, и КСИ реализаций, продолжения SPIE. Издание 4474, ноябрь 2001.

[2] Loughlin, P., Ф. Кэкрэк и Л. Коэн. "Условный Анализ Момента Переходных процессов с Приложением к Вертолетным Данным об Отказе". Механические Системы и Обработка сигналов. Vol 14, Выпуск 4, 2000, стр 511–522.

Смотрите также

| |

Введенный в R2018a

Для просмотра документации необходимо авторизоваться на сайте