loss

Потеря классификации для Гауссовой модели классификации ядер

Описание

пример

L = loss(Mdl,X,Y) возвращает потерю классификации для бинарной Гауссовой модели Mdl классификации ядер использование данных о предикторе в X и соответствующий класс помечает в Y.

пример

L = loss(Mdl,X,Y,Name,Value) дополнительные опции использования заданы одним или несколькими аргументами пары "имя-значение". Например, можно задать функцию потерь классификации и веса наблюдения. Затем loss возвращает взвешенную потерю классификации с помощью заданной функции потерь.

Примеры

свернуть все

Загрузите ionosphere набор данных. Этот набор данных имеет 34 предиктора, и 351 бинарный ответ для радара возвращается, любой плохо ('b') или хороший ('g').

load ionosphere

Разделите набор данных в наборы обучающих данных и наборы тестов. Задайте 15%-ю выборку затяжки для набора тестов.

rng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',0.15);
trainingInds = training(Partition); % Indices for the training set
testInds = test(Partition); % Indices for the test set

Обучите бинарную модель классификации ядер использование набора обучающих данных.

Mdl = fitckernel(X(trainingInds,:),Y(trainingInds));

Оцените ошибку классификации наборов обучающих данных и ошибку классификации наборов тестов.

ceTrain = loss(Mdl,X(trainingInds,:),Y(trainingInds))
ceTrain = 0.0067
ceTest = loss(Mdl,X(testInds,:),Y(testInds))
ceTest = 0.1140

Загрузите ionosphere набор данных. Этот набор данных имеет 34 предиктора, и 351 бинарный ответ для радара возвращается, любой плохо ('b') или хороший ('g').

load ionosphere

Разделите набор данных в наборы обучающих данных и наборы тестов. Задайте 15%-ю выборку затяжки для набора тестов.

rng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',0.15);
trainingInds = training(Partition); % Indices for the training set
testInds = test(Partition); % Indices for the test set

Обучите бинарную модель классификации ядер использование набора обучающих данных.

Mdl = fitckernel(X(trainingInds,:),Y(trainingInds));

Создайте анонимную функцию, которая измеряет линейную потерю, то есть,

L=j-wjyjfjjwj.

wj вес для наблюдения j, yj ответ j (-1 для отрицательного класса, и 1 в противном случае), и fj необработанная классификационная оценка наблюдения j.

linearloss = @(C,S,W,Cost)sum(-W.*sum(S.*C,2))/sum(W);

Пользовательские функции потерь должны быть написаны в конкретной форме. Для правил о записи пользовательской функции потерь смотрите 'LossFun' аргумент пары "имя-значение".

Оцените потерю классификации наборов обучающих данных и потерю классификации наборов тестов с помощью линейной функции потерь.

ceTrain = loss(Mdl,X(trainingInds,:),Y(trainingInds),'LossFun',linearloss)
ceTrain = -1.0851
ceTest = loss(Mdl,X(testInds,:),Y(testInds),'LossFun',linearloss)
ceTest = -0.7821

Входные параметры

свернуть все

Бинарная модель классификации ядер в виде ClassificationKernel объект модели. Можно создать ClassificationKernel объект модели с помощью fitckernel.

Данные о предикторе в виде n-by-p числовая матрица, где n является количеством наблюдений и p, являются количеством предикторов, используемых, чтобы обучить Mdl.

Длина Y и количество наблюдений в X должно быть равным.

Типы данных: single | double

Класс помечает в виде категориального, символа, или массива строк, логического или числового вектора или массива ячеек из символьных векторов.

  • Тип данных Y должен совпасть с типом данных Mdl.ClassNames. (Программное обеспечение обрабатывает строковые массивы как массивы ячеек из символьных векторов.)

  • Отличные классы в Y должно быть подмножество Mdl.ClassNames.

  • Если Y символьный массив, затем каждый элемент должен соответствовать одной строке массива.

  • Длина Y и количество наблюдений в X должно быть равным.

Типы данных: categorical | char | string | logical | single | double | cell

Аргументы в виде пар имя-значение

Задайте дополнительные разделенные запятой пары Name,Value аргументы. Name имя аргумента и Value соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Пример: L = loss(Mdl,X,Y,'LossFun','quadratic','Weights',weights) возвращает взвешенную потерю классификации с помощью квадратичной функции потерь.

Функция потерь в виде разделенной запятой пары, состоящей из 'LossFun' и встроенное имя функции потерь или указатель на функцию.

  • Эта таблица приводит доступные функции потерь. Задайте тот с помощью его соответствующего значения.

    ЗначениеОписание
    'binodeviance'Биномиальное отклонение
    'classiferror'Ошибка классификации
    'exponential'Экспоненциал
    'hinge'Стержень
    'logit'Логистический
    'mincost'Минимальный ожидал стоимость misclassification (для классификационных оценок, которые являются апостериорными вероятностями),
    'quadratic'Квадратичный

    'mincost' подходит для классификационных оценок, которые являются апостериорными вероятностями. Для моделей классификации ядер ученики логистической регрессии возвращают апостериорные вероятности как классификационные оценки по умолчанию, но ученики SVM не делают (см. predict).

  • Задайте свою собственную функцию при помощи обозначения указателя на функцию.

    Позвольте n будьте количеством наблюдений в X и K будьте количеством отличных классов (numel(Mdl.ClassNames), где Mdl входная модель). Ваша функция должна иметь эту подпись:

    lossvalue = lossfun(C,S,W,Cost)

    • Выходной аргумент lossvalue скаляр.

    • Вы выбираете имя функции (lossfun).

    • C n- K логическая матрица со строками, указывающими на класс, которому принадлежит соответствующее наблюдение. Порядок следования столбцов соответствует порядку класса в Mdl.ClassNames.

      Создайте C установкой C(p,q) = 1, если наблюдение p находится в классе q, для каждой строки. Установите все другие элементы строки p к 0.

    • S n- K числовая матрица классификационных оценок. Порядок следования столбцов соответствует порядку класса в Mdl.ClassNamesS матрица классификационных оценок, похожих на выход predict.

    • W n- 1 числовой вектор весов наблюдения. Если вы передаете W, программное обеспечение нормирует веса, чтобы суммировать к 1.

    • Cost K- K числовая матрица затрат misclassification. Например, Cost = ones(K) – eye(K) задает стоимость 0 для правильной классификации и 1 для misclassification.

Пример: 'LossFun', @lossfun

Типы данных: char | string | function_handle

Веса наблюдения в виде разделенной запятой пары, состоящей из 'Weights' и положительный числовой вектор длины n, где n количество наблюдений в X. Если вы предоставляете веса, loss вычисляет взвешенную потерю классификации.

Значением по умолчанию являются единицы (n,1).

loss нормирует веса, чтобы суммировать до значения априорной вероятности в соответствующем классе.

Типы данных: double | single

Выходные аргументы

свернуть все

Потеря классификации, возвращенная в виде числа. Интерпретация L зависит от Weights и LossFun.

Больше о

свернуть все

Потеря классификации

Функции Classification loss измеряют прогнозирующую погрешность моделей классификации. Когда вы сравниваете тот же тип потери среди многих моделей, более низкая потеря указывает на лучшую прогнозную модель.

Предположим следующее:

  • L является средневзвешенной потерей классификации.

  • n является объемом выборки.

  • yj является наблюдаемой меткой класса. Программные коды это как –1 или 1, указывая на отрицательный или положительный класс, соответственно.

  • f (Xj) является необработанной классификационной оценкой для преобразованного наблюдения (строка) j данных о предикторе X с помощью расширения функции.

  • mj = yj f (Xj) является классификационной оценкой для классификации наблюдения j в класс, соответствующий yj. Положительные значения mj указывают на правильную классификацию и не способствуют очень средней потере. Отрицательные величины mj указывают на неправильную классификацию и способствуют средней потере.

  • Весом для наблюдения j является wj. Программное обеспечение нормирует веса наблюдения так, чтобы они суммировали к соответствующей предшествующей вероятности класса. Программное обеспечение также нормирует априорные вероятности так, чтобы они суммировали к 1. Поэтому

    j=1nwj=1.

Эта таблица описывает поддерживаемые функции потерь, которые можно задать при помощи 'LossFun' аргумент пары "имя-значение".

Функция потерьЗначение LossFunУравнение
Биномиальное отклонение'binodeviance'L=j=1nwjlog{1+exp[2mj]}.
Экспоненциальная потеря'exponential'L=j=1nwjexp(mj).
Ошибка классификации'classiferror'

L=j=1nwjI{y^jyj}.

Ошибка классификации является взвешенной частью неправильно классифицированных наблюдений где y^j метка класса, соответствующая классу с максимальной апостериорной вероятностью. I {x} является функцией индикатора.

Потеря стержня'hinge'L=j=1nwjmax{0,1mj}.
Потеря логита'logit'L=j=1nwjlog(1+exp(mj)).
Минимальная стоимость'mincost'

Программное обеспечение вычисляет взвешенную минимальную стоимость с помощью этой процедуры в наблюдениях j = 1..., n.

  1. Оцените 1 K вектором ожидаемых затрат классификации для наблюдения j:

    γj=f(Xj)C.

    f (Xj) является вектор-столбцом апостериорных вероятностей класса. C является матрицей стоимости, которую входная модель хранит в Cost свойство.

  2. Для наблюдения j предскажите метку класса, соответствующую минимальной ожидаемой стоимости классификации:

    y^j=minj=1,...,K(γj).

  3. Используя C, идентифицируйте, что стоимость подверглась (cj) для того, чтобы сделать предсказание.

Взвешенная, средняя, минимальная потеря стоимости

L=j=1nwjcj.

Квадратичная потеря'quadratic'L=j=1nwj(1mj)2.

Этот рисунок сравнивает функции потерь (кроме минимальной стоимости) для одного наблюдения по m. Некоторые функции нормированы, чтобы пройти [0,1].

Расширенные возможности

Смотрите также

| |

Введенный в R2017b