Пороги сжатия мультисигнала 1-D и производительность
[THR_VAL,L2_Perf,N0_Perf] = mswcmptp(DEC,METH)
[THR_VAL,L2_Perf,N0_Perf]
= mswcmptp(DEC,METH,PARAM)
[THR_VAL,L2_Perf,N0_Perf] = mswcmptp(DEC,METH) или [THR_VAL,L2_Perf,N0_Perf]
= mswcmptp(DEC,METH,PARAM) вычисляет векторы THR_VAL, L2_Perf и N0_Perf полученный после сжатия с помощью METH метод и при необходимости PARAM параметр (см. mswcmp для получения дополнительной информации о METH и PARAM).
Для сигнала ith:
THR_VAL(i) порог, применился к коэффициентам вейвлета. Для зависимого метода уровня, THR_VAL(i,j) порог, применился к коэффициентам детали на уровне j
L2_Perf(i) процент энергии (L2_norm), сохраненный после сжатия.
N0_Perf(i) процент нулей, полученных после сжатия.
Можно использовать еще три дополнительных входных параметров:
[...] = mswcmptp(...,S_OR_H,KEEPAPP,IDXSIG)
S_OR_H ('s' or 'h') обозначает мягкую или трудную пороговую обработку (см. mswthresh для получения дополнительной информации).
KEEPAPP (true or false) указывает, сохранить ли коэффициенты приближения (true) или не (false)
IDXSIG вектор, который содержит индексы начальных сигналов или 'all'.
Значениями по умолчанию является, соответственно, 'h', ложь и 'all'.
[1] Daubechies, я. Десять лекций по вейвлетам, CBMS-NSF региональный ряд конференции в прикладной математике. Филадельфия, PA: SIAM Эд, 1992.
[2] Mallat, S. G. “Теория для Разложения Сигнала Мультиразрешения: Представление Вейвлета”, Транзакции IEEE согласно Анализу Шаблона и Искусственному интеллекту. Издание 11, Выпуск 7, июль 1989, стр 674–693.
[3] Мейер, Y. Вейвлеты и операторы. Переведенный Д. Х. Сэлинджером. Кембридж, Великобритания: Издательство Кембриджского университета, 1995.
[4] Мезаструктура, Гектор. “Адаптированные Вейвлеты для Обнаружения Шаблона”. Происходящий в Распознавании образов, Анализе изображения и Приложениях, отредактированных Альберто Санфелиу и Мануелем Лазо Кортесом, 3773:933–44. Берлин, Гейдельберг: Спрингер Берлин Гейдельберг, 2005. https://doi.org/10.1007/11578079_96.