DAGNetwork

Сеть Directed acyclic graph (DAG) для глубокого обучения

Описание

Сеть ДАГА является нейронной сетью для глубокого обучения для слоев, расположенных как направленный граф без петель. Сеть ДАГА может иметь более комплексную архитектуру, в которой слои имеют входные параметры от нескольких слоев и выходных параметров к нескольким слоям.

Создание

Существует несколько способов создать DAGNetwork объект:

Примечание

Чтобы узнать о других предварительно обученных сетях, смотрите Предварительно обученные Глубокие нейронные сети.

Свойства

развернуть все

Слоя сети в виде Layer массив.

Связи слоя в виде таблицы с двумя столбцами.

Каждая строка таблицы представляет связь в графике слоев. Первый столбец, Source, задает источник каждой связи. Второй столбец, Destination, задает место назначения каждой связи. Источники связи и места назначения являются или именами слоя или имеют форму 'layerName/IOName', где 'IOName' имя ввода или вывода слоя.

Типы данных: table

Сетевой входной слой называет в виде массива ячеек из символьных векторов.

Типы данных: cell

Сетевой выходной слой называет в виде массива ячеек из символьных векторов.

Типы данных: cell

Функции объекта

activationsВычислите активации слоя нейронной сети для глубокого обучения
classifyКлассифицируйте данные с помощью обученной глубокой нейронной сети
predictПредскажите ответы с помощью обученной глубокой нейронной сети
plotПостройте график слоев нейронной сети

Примеры

свернуть все

Создайте простую сеть направленного графа без петель (DAG) для глубокого обучения. Обучите сеть, чтобы классифицировать изображения цифр. Простая сеть в этом примере состоит из:

  • Основная ветвь со слоями, соединенными последовательно.

  • Связь ярлыка, содержащая один сверточный слой 1 на 1. Связи ярлыка позволяют градиентам параметра течь более легко от выходного слоя до более ранних слоев сети.

Создайте основную ветвь сети как массив слоя. Слой сложения суммирует несколько поэлементных входных параметров. Задайте количество входных параметров для слоя сложения, чтобы суммировать. Все слои должны иметь имена, и все имена должны быть уникальными.

layers = [
    imageInputLayer([28 28 1],'Name','input')
    
    convolution2dLayer(5,16,'Padding','same','Name','conv_1')
    batchNormalizationLayer('Name','BN_1')
    reluLayer('Name','relu_1')
    
    convolution2dLayer(3,32,'Padding','same','Stride',2,'Name','conv_2')
    batchNormalizationLayer('Name','BN_2')
    reluLayer('Name','relu_2')
    convolution2dLayer(3,32,'Padding','same','Name','conv_3')
    batchNormalizationLayer('Name','BN_3')
    reluLayer('Name','relu_3')
    
    additionLayer(2,'Name','add')
    
    averagePooling2dLayer(2,'Stride',2,'Name','avpool')
    fullyConnectedLayer(10,'Name','fc')
    softmaxLayer('Name','softmax')
    classificationLayer('Name','classOutput')];

Создайте график слоев из массива слоя. layerGraph подключения все слои в layers последовательно. Постройте график слоев.

lgraph = layerGraph(layers);
figure
plot(lgraph)

Создайте сверточный слой 1 на 1 и добавьте его в график слоев. Задайте количество сверточных фильтров и шага так, чтобы размер активации совпадал с размером активации 'relu_3' слой. Это расположение позволяет слою сложения добавить выходные параметры 'skipConv' и 'relu_3' слои. Чтобы проверять, что слой находится в графике, постройте график слоев.

skipConv = convolution2dLayer(1,32,'Stride',2,'Name','skipConv');
lgraph = addLayers(lgraph,skipConv);
figure
plot(lgraph)

Создайте связь ярлыка из 'relu_1' слой к 'add' слой. Поскольку вы задали два как количество входных параметров к слою сложения, когда вы создали его, слой имеет два входных параметров под названием 'in1' и 'in2'. 'relu_3' слой уже соединяется с 'in1' входной параметр. Соедините 'relu_1' слой к 'skipConv' слой и 'skipConv' слой к 'in2' вход 'add' слой. Слой сложения теперь суммирует выходные параметры 'relu_3' и 'skipConv' слои. Чтобы проверять, что слои соединяются правильно, постройте график слоев.

lgraph = connectLayers(lgraph,'relu_1','skipConv');
lgraph = connectLayers(lgraph,'skipConv','add/in2');
figure
plot(lgraph);

Загрузите данные об обучении и валидации, которые состоят из 28 28 полутоновых изображений цифр.

[XTrain,YTrain] = digitTrain4DArrayData;
[XValidation,YValidation] = digitTest4DArrayData;

Задайте опции обучения и обучите сеть. trainNetwork проверяет сеть с помощью данных о валидации каждый ValidationFrequency итерации.

options = trainingOptions('sgdm', ...
    'MaxEpochs',8, ...
    'Shuffle','every-epoch', ...
    'ValidationData',{XValidation,YValidation}, ...
    'ValidationFrequency',30, ...
    'Verbose',false, ...
    'Plots','training-progress');
net = trainNetwork(XTrain,YTrain,lgraph,options);

Отобразите свойства обучившего сеть. Сетью является DAGNetwork объект.

net
net = 
  DAGNetwork with properties:

         Layers: [16×1 nnet.cnn.layer.Layer]
    Connections: [16×2 table]
     InputNames: {'input'}
    OutputNames: {'classOutput'}

Классифицируйте изображения валидации и вычислите точность. Сеть очень точна.

YPredicted = classify(net,XValidation);
accuracy = mean(YPredicted == YValidation)
accuracy = 0.9930

Расширенные возможности

Введенный в R2017b
Для просмотра документации необходимо авторизоваться на сайте