summarize

Отобразите результаты оценки модели векторного исправления ошибок (VEC)

Описание

пример

summarize(Mdl) отображает сводные данные модели VEC (p - 1) Mdl.

  • Если Mdl предполагаемая модель VEC, возвращенная estimate, затем summarize оценка печати заканчивается к Командному окну MATLAB®. Отображение включает сводные данные оценки и таблицу оценок параметра с соответствующими стандартными погрешностями, статистикой t и p - значения. Сводные данные оценки включают подходящую статистику, такую как Критерий информации о Akaike (AIC) и предполагаемые инновации ковариационные и корреляционные матрицы.

  • Если Mdl непредполагаемая модель VEC, возвращенная vecm, затем summarize распечатывает отображение стандартного объекта (то же отображение, что vecm печать во время создания модели).

пример

results = summarize(Mdl) возвращает одну из следующих переменных и не распечатывает к Командному окну.

  • Если Mdl предполагаемая модель VEC, затем results структура, содержащая результаты оценки.

  • Если Mdl непредполагаемая модель VEC, затем results vecm объект модели, который равен Mdl.

Примеры

свернуть все

Рассмотрите модель VEC для следующих семи макроэкономических рядов, и затем подбирайте модель к данным.

  • Валовой внутренний продукт (ВВП)

  • GDP неявный ценовой дефлятор

  • Заплаченная компенсация сотрудников

  • Несельскохозяйственные часы делового сектора всех людей

  • Эффективная ставка по федеральным фондам

  • Частные потребительские расходы

  • Грубые частные внутренние инвестиции

Предположим, что cointegrating ранг 4 и один срок короткого промежутка времени является соответствующим, то есть, рассмотрите модель VEC(1).

Загрузите Data_USEconVECModel набор данных.

load Data_USEconVECModel

Для получения дополнительной информации о наборе данных и переменных, введите Description в командной строке.

Определите, должны ли данные быть предварительно обработаны путем графического вывода ряда на отдельных графиках.

figure;
subplot(2,2,1)
plot(FRED.Time,FRED.GDP);
title('Gross Domestic Product');
ylabel('Index');
xlabel('Date');
subplot(2,2,2)
plot(FRED.Time,FRED.GDPDEF);
title('GDP Deflator');
ylabel('Index');
xlabel('Date');
subplot(2,2,3)
plot(FRED.Time,FRED.COE);
title('Paid Compensation of Employees');
ylabel('Billions of $');
xlabel('Date');
subplot(2,2,4)
plot(FRED.Time,FRED.HOANBS);
title('Nonfarm Business Sector Hours');
ylabel('Index');
xlabel('Date');

figure;
subplot(2,2,1)
plot(FRED.Time,FRED.FEDFUNDS);
title('Federal Funds Rate');
ylabel('Percent');
xlabel('Date');
subplot(2,2,2)
plot(FRED.Time,FRED.PCEC);
title('Consumption Expenditures');
ylabel('Billions of $');
xlabel('Date');
subplot(2,2,3)
plot(FRED.Time,FRED.GPDI);
title('Gross Private Domestic Investment');
ylabel('Billions of $');
xlabel('Date');

Стабилизируйте весь ряд, кроме ставки по федеральным фондам, путем применяния логарифмического преобразования. Масштабируйте получившийся ряд 100 так, чтобы все ряды были по той же шкале.

FRED.GDP = 100*log(FRED.GDP);      
FRED.GDPDEF = 100*log(FRED.GDPDEF);
FRED.COE = 100*log(FRED.COE);       
FRED.HOANBS = 100*log(FRED.HOANBS); 
FRED.PCEC = 100*log(FRED.PCEC);     
FRED.GPDI = 100*log(FRED.GPDI);

Создайте модель VEC(1) с помощью краткого синтаксиса. Задайте имена переменных.

Mdl = vecm(7,4,1);
Mdl.SeriesNames = FRED.Properties.VariableNames
Mdl = 
  vecm with properties:

             Description: "7-Dimensional Rank = 4 VEC(1) Model with Linear Time Trend"
             SeriesNames: "GDP"  "GDPDEF"  "COE"  ... and 4 more
               NumSeries: 7
                    Rank: 4
                       P: 2
                Constant: [7×1 vector of NaNs]
              Adjustment: [7×4 matrix of NaNs]
           Cointegration: [7×4 matrix of NaNs]
                  Impact: [7×7 matrix of NaNs]
   CointegrationConstant: [4×1 vector of NaNs]
      CointegrationTrend: [4×1 vector of NaNs]
                ShortRun: {7×7 matrix of NaNs} at lag [1]
                   Trend: [7×1 vector of NaNs]
                    Beta: [7×0 matrix]
              Covariance: [7×7 matrix of NaNs]

Mdl vecm объект модели. Все свойства, содержащие NaN значения соответствуют параметрам, чтобы быть оцененными определенными данными.

Оцените модель с помощью целого набора данных и опций по умолчанию.

EstMdl = estimate(Mdl,FRED.Variables)
EstMdl = 
  vecm with properties:

             Description: "7-Dimensional Rank = 4 VEC(1) Model"
             SeriesNames: "GDP"  "GDPDEF"  "COE"  ... and 4 more
               NumSeries: 7
                    Rank: 4
                       P: 2
                Constant: [14.1329 8.77841 -7.20359 ... and 4 more]'
              Adjustment: [7×4 matrix]
           Cointegration: [7×4 matrix]
                  Impact: [7×7 matrix]
   CointegrationConstant: [-28.6082 109.555 -77.0912 ... and 1 more]'
      CointegrationTrend: [4×1 vector of zeros]
                ShortRun: {7×7 matrix} at lag [1]
                   Trend: [7×1 vector of zeros]
                    Beta: [7×0 matrix]
              Covariance: [7×7 matrix]

EstMdl предполагаемый vecm объект модели. Это полностью задано, потому что все параметры знали значения. По умолчанию, estimate налагает ограничения формы модели H1 Йохансен VEC путем удаления cointegrating тренда и линейных условий тренда из модели. Исключение параметра из оценки эквивалентно наложению ограничений равенства, чтобы обнулить.

Отобразите краткое изложение от оценки.

results = summarize(EstMdl)
results = struct with fields:
               Description: "7-Dimensional Rank = 4 VEC(1) Model"
                     Model: "H1"
                SampleSize: 238
    NumEstimatedParameters: 112
             LogLikelihood: -1.4939e+03
                       AIC: 3.2118e+03
                       BIC: 3.6007e+03
                     Table: [133x4 table]
                Covariance: [7x7 double]
               Correlation: [7x7 double]

Table поле results таблица оценок параметра и соответствующей статистики.

Считайте модель и данные в Оценке Моделью VEC и этими четырьмя альтернативными моделями VEC: VEC (0), VEC (1), VEC (3) и VEC (7). Используя исторические данные, оценка каждая из этих четырех моделей, и затем сравнивают подгонки модели с помощью получившегося Байесового информационного критерия (BIC).

Загрузите Data_USEconVECModel набор данных и предварительно обрабатывает данные.

load Data_USEconVECModel
FRED.GDP = 100*log(FRED.GDP);      
FRED.GDPDEF = 100*log(FRED.GDPDEF);
FRED.COE = 100*log(FRED.COE);       
FRED.HOANBS = 100*log(FRED.HOANBS); 
FRED.PCEC = 100*log(FRED.PCEC);     
FRED.GPDI = 100*log(FRED.GPDI);

В цикле:

  • Создайте модель VEC с помощью краткого синтаксиса.

  • Оцените Модель VEC. Зарезервируйте максимальное значение p как преддемонстрационные наблюдения.

  • Сохраните результаты оценки.

numlags = [0 1 3 7];
p = numlags + 1;
Y0 = FRED{1:max(p),:};
Y = FRED{((max(p) + 1):end),:};

for j = 1:numel(p)
    Mdl = vecm(7,4,numlags(j));
    EstMdl = estimate(Mdl,Y,'Y0',Y);
    results(j) = summarize(EstMdl);
end

results 4 1 массив структур, содержащий результаты оценки каждой модели.

Извлеките BIC из каждого набора результатов.

BIC = [results.BIC]
BIC = 1×4
103 ×

    5.3948    5.4372    5.8254    6.5536

Модель, соответствующая самому низкому BIC, имеет лучшую подгонку среди рассмотренных моделей. Поэтому модель VEC(0) является моделью оптимальной подгонки.

Входные параметры

свернуть все

Модель VEC в виде vecm объект модели, возвращенный estimate или vecm.

Выходные аргументы

свернуть все

Сводные данные модели, возвращенные как массив структур или vecm объект модели.

  • Если Mdl предполагаемая модель VEC, затем results массив структур, содержащий поля в этой таблице.

    Поле Описание
    DescriptionИтоговое описание модели (строка)
    ModelМодель Йохансена детерминированных условий ("H2", "H1*", "H1"HH) [1]
    SampleSizeЭффективный объем выборки (числовой скаляр)
    NumEstimatedParametersКоличество предполагаемых параметров (числовой скаляр)
    LogLikelihoodОптимизированное значение логарифмической правдоподобности (числовой скаляр)
    AICКритерий информации о Akaike (числовой скаляр)
    BICБайесов информационный Критерий (числовой скаляр)
    TableПараметр оценивает с соответствующими стандартными погрешностями, статистика t (оценка, разделенная на стандартную погрешность), и p - значения (принимающий нормальность); таблица со строками, соответствующими параметрам модели
    CovarianceПредполагаемая остаточная ковариационная матрица (оценка наибольшего правдоподобия), Mdl.NumSeries- Mdl.NumSeries числовая матрица со строками и столбцами, соответствующими инновациям в уравнениях ответа, упорядочена столбцами Y
    CorrelationПредполагаемая остаточная корреляционная матрица, размерности которой соответствуют размерностям Covariance

    summarize использование mvregress реализовывать многомерную нормальную оценку наибольшего правдоподобия. Для получения дополнительной информации об оценках и стандартных погрешностях, смотрите Оценку Многомерных Моделей Регрессии.

  • Если Mdl непредполагаемая модель VEC, затем results vecm объект модели, который равен Mdl.

Ссылки

[1] Йохансен, S. Основанный на вероятности вывод в векторных авторегрессивных моделях Cointegrated. Оксфорд: Издательство Оксфордского университета, 1995.

Введенный в R2017b
Для просмотра документации необходимо авторизоваться на сайте