Создайте расширенный объект Фильтра Калмана для онлайновой оценки состояния
создает расширенный объект Фильтра Калмана для онлайновой оценки состояния дискретного времени нелинейная система. obj
= extendedKalmanFilter(StateTransitionFcn
,MeasurementFcn
,InitialState
)StateTransitionFcn
функция, которая вычисляет состояние системы во время k, учитывая вектор состояния во время k-1. MeasurementFcn
функция, которая вычисляет выходное измерение системы во время k, учитывая состояние во время k. InitialState
задает начальное значение оценок состояния.
После создания объекта используйте correct
и predict
команды, чтобы обновить оценки состояния и ошибочные значения ковариации оценки состояния с помощью дискретного времени первого порядка расширили алгоритм Фильтра Калмана и данные реального времени.
задает дополнительные атрибуты расширенного объекта Фильтра Калмана, использующего один или несколько obj
= extendedKalmanFilter(StateTransitionFcn
,MeasurementFcn
,InitialState
,Name,Value
)Name,Value
парные аргументы.
создает расширенный объект Фильтра Калмана использование заданных функций изменения состояния и измерения. Перед использованием obj
= extendedKalmanFilter(StateTransitionFcn
,MeasurementFcn
)predict
и correct
команды, задайте значения начального состояния с помощью записи через точку. Например, для системы с двумя состояниями со значениями начального состояния [1;0]
, задайте obj.State = [1;0]
.
задает дополнительные атрибуты расширенного объекта Фильтра Калмана, использующего один или несколько obj
= extendedKalmanFilter(StateTransitionFcn
,MeasurementFcn
,Name,Value
)Name,Value
парные аргументы. Перед использованием predict
и correct
команды, задайте значения начального состояния с помощью Name,Value
парные аргументы или запись через точку.
создает расширенный объект Фильтра Калмана со свойствами, заданными с помощью одного или нескольких obj
= extendedKalmanFilter(Name,Value
)Name,Value
парные аргументы. Перед использованием predict
и correct
команды, задайте функцию изменения состояния, функцию измерения и значения начального состояния с помощью Name,Value
парные аргументы или запись через точку.
extendedKalmanFilter
создает объект для онлайновой оценки состояния дискретного времени, нелинейная система с помощью дискретного времени первого порядка расширила алгоритм Фильтра Калмана.
Считайте объект с состояниями x, входом u, выходом y, шум процесса w и шум измерения v. Примите, что можно представлять объект как нелинейную систему.
Алгоритм вычисляет оценки состояния из нелинейной системы с помощью функций изменения состояния и измерения задан вами. Программное обеспечение позволяет вам задать шум в этих функциях как дополнение или недополнение:
Аддитивные Шумовые Условия — изменение состояния и уравнения измерений имеют следующую форму:
Здесь f является нелинейной функцией изменения состояния, которая описывает эволюцию состояний x
от одного временного шага до следующего. Нелинейная функция измерения h связывает x
к измерениям y
на временном шаге k
W
и v
нулевое среднее значение, некоррелированые шумы процесса и измерения, соответственно. Эти функции могут также иметь дополнительные входные параметры, которые обозначаются us
и um
в уравнениях. Например, дополнительные аргументы могли быть временным шагом k
или входные параметры u
к нелинейной системе. Может быть несколько таких аргументов.
Обратите внимание на то, что шумовые условия в обоих уравнениях являются дополнением. Таким образом, x(k)
линейно связан с шумом процесса w(k-1)
, и y(k)
линейно связан с шумом измерения v(k)
.
Неаддитивные Шумовые Условия — программное обеспечение также поддерживает более комплексные функции изменения состояния и измерения, где x состояния [k] и измерение y [k] является нелинейными функциями шума процесса и шума измерения, соответственно. Когда шумовые условия являются недополнением, изменение состояния и уравнение измерений имеют следующую форму:
Когда вы выполняете онлайновую оценку состояния, вы сначала создаете нелинейную функцию изменения состояния f и функция измерения h. Вы затем создаете extendedKalmanFilter
объект с помощью этих нелинейных функций, и задает, являются ли шумовые условия дополнением или недополнением. Можно также задать Якобианы функций изменения состояния и измерения. Если вы не задаете их, программное обеспечение численно вычисляет Якобианы.
После того, как вы создадите объект, вы используете predict
команда, чтобы предсказать оценку состояния на следующем временном шаге, и correct
откорректировать оценки состояния с помощью алгоритма и данных реального времени. Для получения информации об алгоритме смотрите Расширенный и Алгоритмы Сигма-точечного фильтра Калмана для Онлайновой Оценки состояния.
Можно использовать следующие команды с extendedKalmanFilter
объекты:
Команда | Описание |
---|---|
correct | Откорректируйте ошибочную ковариацию оценки состояния и оценки состояния на временном шаге k с помощью результатов измерений на временном шаге k. |
predict | Предскажите ошибочную ковариацию оценки состояния и оценки состояния во время следующий временной шаг. |
residual | Возвратите различие между фактическими и предсказанными измерениями. |
clone | Создайте другой объект с теми же значениями свойства объекта. Не создавайте дополнительные объекты с помощью синтаксиса |
Для extendedKalmanFilter
свойства объектов, смотрите Свойства.
clone
| correct
| predict
| residual
| unscentedKalmanFilter