findstatesOptions

Набор опций для findstates

Описание

пример

opt = findstatesOptions создает набор опции по умолчанию для findstates. Используйте запись через точку, чтобы настроить набор опции в случае необходимости.

пример

opt = findstatesOptions(Name,Value) создает набор опции с опциями, заданными одним или несколькими Name,Value парные аргументы. Опции, которые вы не задаете, сохраняют свое значение по умолчанию.

Примеры

свернуть все

Создайте набор опции для findstates путем конфигурирования спецификации возражают для начальных состояний.

Идентифицируйте модель в пространстве состояний четвертого порядка из данных.

load iddata8 z8;
sys = ssest(z8,4);

z8 iddata объект, содержащий данные об отклике системы временного интервала. sys четвертый порядок idss модель, которая идентифицирована из данных.

Сконфигурируйте объект спецификации для начальных состояний модели.

x0obj = idpar([1;nan(3,1)]);
x0obj.Free(1) = false;
x0obj.Minimum(2) = 0;
x0obj.Maximum(2) = 1;

x0obj задает ограничения оценки на начальные условия. Значение первого состояния задано как 1 когда x0obj создается. x0obj.Free(1) = false задает первое начальное состояние как фиксированный параметр оценки. Второе состояние неизвестно. Но, x0obj.Minimum(2) = 0 и x0obj.Maximum(2) = 1 задайте нижние и верхние границы второго состояния как 0 и 1, соответственно.

Создайте набор опции для findstates идентифицировать начальные состояния модели.

opt = findstatesOptions;
opt.InitialState = x0obj;

Идентифицируйте начальные состояния модели.

x0_estimated = findstates(sys,z8,Inf,opt);

Создайте набор опции для findstates где:

  • Начальные состояния оцениваются таким образом, что норма ошибки предсказания минимизирована. Начальные значения состояний, соответствующих ненулевым задержкам, также оцениваются.

  • Адаптивный поиск Ньютона Гаусса подпространства используется для оценки.

opt = findstatesOptions('InitialState','d','SearchMethod','gna');

Входные параметры

свернуть все

Аргументы в виде пар имя-значение

Задайте дополнительные разделенные запятой пары Name,Value аргументы. Name имя аргумента и Value соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Пример: findstatesOptions('InitialState','d')

Оценка начальных состояний в виде разделенной запятой пары, состоящей из 'InitialState' и одно из следующего:

  • 'e' — Начальные состояния оцениваются таким образом, что норма ошибки предсказания минимизирована.

    Для нелинейных моделей серого ящика, только те начальные состояния i это определяется как свободное в модели (sys.InitialStates(i).Fixed = false) оцениваются. Чтобы оценить все состояния модели, сначала задайте весь Nx состояния idnlgrey модель sys как свободный.

    for i = 1:Nx
    sys.InitialStates(i).Fixed = false;
    end 

    Точно так же зафиксировать все начальные состояния к значениям, заданным в sys.InitialStates, сначала задайте все состояния, как зафиксировано в sys.InitialStates свойство нелинейной модели серого ящика.

  • 'd' — Подобно 'e', но поглощает ненулевые задержки в коэффициенты модели. Задержки сначала преобразованы в явные состояния модели, и начальные значения тех состояний также оценены и возвращены.

    Используйте эту опцию в течение дискретного времени линейные модели только.

  • Vector or Matrix — Исходное предположение для значений состояния, при использовании нелинейных моделей. Задайте вектор-столбец длины, равной количеству состояний. Для данных мультиэксперимента используйте матрицу с Ne столбцы, где Ne количество экспериментов.

    Используйте эту опцию для нелинейных моделей только.

  • x0obj — Объект Specification создал использование idpar. Используйте x0obj наложить ограничения на начальные состояния путем фиксации их значения или определения минимальных или максимальных границ.

    Используйте x0obj только для нелинейных моделей серого ящика и линейных моделей в пространстве состояний (idss или idgrey). Эта опция применима только для горизонта предсказания, равного 1 или Inf. Смотрите findstates для получения дополнительной информации о горизонте предсказания.

Удаление смещения от входных данных временного интервала во время оценки в виде разделенной запятой пары, состоящей из 'InputOffset' и одно из следующего:

  • Вектор-столбец положительных целых чисел длины Nu, где Nu является количеством входных параметров.

  • [] — Не указывает ни на какое смещение.

  • Nu-by-Ne матрица — Для данных мультиэксперимента, задайте InputOffset как Nu-by-Ne матрица. Nu является количеством входных параметров, и Ne является количеством экспериментов.

Каждая запись задана InputOffset вычтен из соответствующих входных данных.

Удаление смещения от выходных данных временного интервала во время оценки в виде разделенной запятой пары, состоящей из 'OutputOffset' и одно из следующего:

  • Вектор-столбец длины Ny, где Ny является количеством выходных параметров.

  • [] — Не указывает ни на какое смещение.

  • Ny-by-Ne матрица — Для данных мультиэксперимента, задайте OutputOffset как Ny-by-Ne матрица. Ny является количеством выходных параметров, и Ne является количеством экспериментов.

Каждая запись задана OutputOffset вычтен из соответствующих выходных данных.

Взвешивание ошибок предсказания при использовании мультивыходных данных в виде разделенной запятой пары, состоящей из 'OutputWeight' и одно из следующего:

  • [] — Никакое взвешивание не используется. Определение как [] совпадает с eye(Ny), где Ny является количеством выходных параметров.

  • 'noise' — Инверсия шумового отклонения, сохраненного моделью, используется для взвешивания во время оценки начальных состояний.

  • Положительная полуопределенная матрица, W, из размера Ny-by-Ny — Это взвешивание минимизирует trace(E'*E*W) для оценки начальных состояний, где E матрица ошибок предсказания.

Числовой метод поиска, используемый для итеративной оценки параметра в виде разделенной запятой пары, состоящей из 'SearchMethod' и одно из следующего:

  • 'auto' — Комбинация алгоритмов поиска линии, 'gn', 'lm', 'gna', и 'grad' методы пробуют в последовательности в каждой итерации. Первое продвижение направления спуска к сокращению стоимости оценки используется.

  • 'gn' — Поиск наименьших квадратов Ньютона Гаусса подпространства. Сингулярные значения якобиевской матрицы меньше, чем GnPinvConstant*eps*max(size(J))*norm(J) отбрасываются при вычислении поискового направления. J является якобиевской матрицей. Матрица Гессиана аппроксимирована как JTJ. Если нет никакого улучшения этого направления, функция пробует направление градиента.

  • 'gna' — Адаптивный поиск Ньютона Гаусса подпространства. Собственные значения меньше, чем gamma*max(sv) из Гессиана проигнорированы, где sv содержит сингулярные значения Гессиана. Направление Ньютона Гаусса вычисляется в остающемся подпространстве. gamma имеет начальное значение InitialGnaTolerance (см. Advanced в 'SearchOptions' для получения дополнительной информации. Это значение увеличено факторным LMStep каждый раз поиску не удается найти нижнее значение критерия меньше чем в пяти делениях пополам. Это значение уменьшено факторным 2*LMStep каждый раз поиск успешен без любых делений пополам.

  • 'lm' — Поиск наименьших квадратов Levenberg-Marquardt, где следующим значением параметров является -pinv(H+d*I)*grad от предыдущего. H является Гессиан, I является единичной матрицей, и grad является градиентом. d является числом, которое увеличено, пока нижнее значение критерия не найдено.

  • 'grad' — Поиск наименьших квадратов наискорейшего спуска.

  • 'lsqnonlin' — Доверительная область отражающий алгоритм lsqnonlin (Optimization Toolbox). Программное обеспечение Requires Optimization Toolbox™.

  • 'fmincon' — Ограниченные нелинейные решатели. Можно использовать последовательное квадратичное программирование (SQP) и доверять области отражающие алгоритмы fmincon (Optimization Toolbox) решатель. Если у вас есть программное обеспечение Optimization Toolbox, можно также использовать внутреннюю точку и алгоритмы активного набора fmincon решатель. Задайте алгоритм в SearchOptions.Algorithm опция. fmincon алгоритмы могут привести к улучшенным результатам оценки в следующих сценариях:

    • Ограниченные проблемы минимизации, когда существуют границы, наложенные на параметры модели.

    • Структуры модели, где функция потерь является нелинейным или не сглаженной функцией параметров.

    • Мультивыведите оценку модели. Определяющая функция потерь минимизирована по умолчанию для мультивыходной оценки модели. fmincon алгоритмы могут минимизировать такие функции потерь непосредственно. Другие методы поиска, такие как 'lm' и 'gn' минимизируйте определяющую функцию потерь путем альтернативной оценки шумового отклонения и сокращения значения потерь для данного шумового значения отклонения. Следовательно, fmincon алгоритмы могут предложить лучший КПД и точность для мультивыходных оценок модели.

Набор опции для алгоритма поиска в виде разделенной запятой пары, состоящей из 'SearchOptions ' и набор параметра поиска с полями, которые зависят от значения SearchMethod.

SearchOptions Структура, когда SearchMethod Задан как 'gn', 'gna', 'lm', 'grad', или 'auto'

Имя поляОписаниеЗначение по умолчанию
Tolerance

Минимальная процентная разница между текущим значением функции потерь и ее ожидаемым улучшением после следующей итерации в виде положительной скалярной величины. Когда процент ожидаемого улучшения меньше Tolerance, остановка итераций. Оценка ожидаемого улучшения функции потерь в следующей итерации основана на векторе Ньютона Гаусса, вычисленном для текущего значения параметров.

0.01
MaxIterations

Максимальное количество итераций во время минимизации функции потерь в виде положительного целого числа. Итерации останавливаются когда MaxIterations достигнут или другому критерию остановки удовлетворяют, такие как Tolerance.

Установка MaxIterations = 0 возвращает результат процедуры запуска.

Используйте sys.Report.Termination.Iterations получить фактическое количество итераций во время оценки, где sys idtf модель.

20
Advanced

Настройки расширенного поиска в виде структуры со следующими полями:

Имя поляОписаниеЗначение по умолчанию
GnPinvConstant

Якобиевский матричный порог сингулярного значения в виде положительной скалярной величины. Сингулярные значения якобиевской матрицы, которые меньше, чем GnPinvConstant*max(size(J)*norm(J)*eps) отбрасываются при вычислении поискового направления. Применимый, когда SearchMethod 'gn'.

10000
InitialGnaTolerance

Начальное значение gamma в виде положительной скалярной величины. Применимый, когда SearchMethod 'gna'.

0.0001
LMStartValue

Начальное значение длины поискового направления d в методе Levenberg-Marquardt в виде положительной скалярной величины. Применимый, когда SearchMethod 'lm'.

0.001
LMStep

Размер Levenberg-Marquardt продвигается в виде положительного целого числа. Следующим значением длины поискового направления d в методе Levenberg-Marquardt является LMStep времена предыдущее. Применимый, когда SearchMethod 'lm'.

2
MaxBisections

Максимальное количество делений пополам, используемых для линии, ищет вдоль поискового направления в виде положительного целого числа.

25
MaxFunctionEvaluations

Максимальное количество вызовов файла модели в виде положительного целого числа. Итерации останавливаются, если количество вызовов файла модели превышает это значение.

Inf
MinParameterChange

Самое маленькое обновление параметра позволено на итерацию в виде неотрицательного скаляра.

0
RelativeImprovement

Относительный порог улучшения в виде неотрицательного скаляра. Итерации останавливаются, если относительное улучшение оценочной функции меньше этого значения.

0
StepReduction

Фактор сокращения шага в виде положительной скалярной величины, которая больше 1. Предложенное обновление параметра уменьшается факторным StepReduction после каждой попытки. Это сокращение продолжается до MaxBisections попытки завершаются, или нижнее значение оценочной функции получено.

StepReduction не применимо для SearchMethod 'lm' (Метод Levenberg-Marquardt).

2

SearchOptions Структура, когда SearchMethod Задан как 'lsqnonlin'

Имя поляОписаниеЗначение по умолчанию
FunctionTolerance

Допуск завершения на функции потерь, которую программное обеспечение минимизирует, чтобы определить предполагаемые значения параметров в виде положительной скалярной величины.

Значение FunctionTolerance совпадает с тем из opt.SearchOptions.Advanced.TolFun.

1e-5
StepTolerance

Допуск завершения на предполагаемых значениях параметров в виде положительной скалярной величины.

Значение StepTolerance совпадает с тем из opt.SearchOptions.Advanced.TolX.

1e-6
MaxIterations

Максимальное количество итераций во время минимизации функции потерь в виде положительного целого числа. Итерации останавливаются когда MaxIterations достигнут или другому критерию остановки удовлетворяют, такие как FunctionTolerance.

Значение MaxIterations совпадает с тем из opt.SearchOptions.Advanced.MaxIter.

20
Advanced

Настройки расширенного поиска в виде набора опции для lsqnonlin.

Для получения дополнительной информации см. таблицу Optimization Options в Опциях Оптимизации (Optimization Toolbox).

Используйте optimset('lsqnonlin') создать набор опции по умолчанию.

SearchOptions Структура, когда SearchMethod Задан как 'fmincon'

Имя поляОписаниеЗначение по умолчанию
Algorithm

fmincon алгоритм оптимизации в виде одного из следующего:

  • 'sqp' — Последовательный алгоритм квадратичного программирования. Алгоритм удовлетворяет границам во всех итерациях, и он может восстановиться с NaN или Inf результаты. Это не крупномасштабный алгоритм. Для получения дополнительной информации смотрите Крупномасштабный по сравнению с Алгоритмами Средней шкалы (Optimization Toolbox).

  • 'trust-region-reflective' — Метод доверительной области подпространства на основе внутреннего отражающего метода Ньютона. Это - крупномасштабный алгоритм.

  • 'interior-point' — Крупномасштабный алгоритм, который требует программного обеспечения Optimization Toolbox. Алгоритм удовлетворяет границам во всех итерациях, и он может восстановиться с NaN или Inf результаты.

  • 'active-set' — Программное обеспечение Requires Optimization Toolbox. Алгоритм может сделать большие шаги, который добавляет скорость. Это не крупномасштабный алгоритм.

Для получения дополнительной информации об алгоритмах, см. Ограниченные Нелинейные Алгоритмы Оптимизации (Optimization Toolbox) и Выбор Algorithm (Optimization Toolbox).

'sqp'
FunctionTolerance

Допуск завершения на функции потерь, которую программное обеспечение минимизирует, чтобы определить предполагаемые значения параметров в виде положительной скалярной величины.

1e-6
StepTolerance

Допуск завершения на предполагаемых значениях параметров в виде положительной скалярной величины.

1e-6
MaxIterations

Максимальное количество итераций во время минимизации функции потерь в виде положительного целого числа. Итерации останавливаются когда MaxIterations достигнут или другому критерию остановки удовлетворяют, такие как FunctionTolerance.

100

Задавать значения полей в SearchOptions , создайте findstatesOptions по умолчанию установите и измените поля с помощью записи через точку. Любые поля, которые вы не изменяете, сохраняют свои значения по умолчанию.

opt = findstatesOptions;
opt.SearchOptions.Tolerance = 0.02;
opt.SearchOptions.Advanced.MaxBisections = 30;

Выходные аргументы

свернуть все

Набор опции для findstates, возвращенный как findstatesOptions опция установлена.

Вопросы совместимости

развернуть все

Смотрите также

|

Представленный в R2012a