fmincon trust-region-reflective алгоритм может минимизировать нелинейную целевую функцию, удовлетворяющую линейным ограничениям равенства только (никакие границы или любые другие ограничения). Например, минимизировать
подвергните некоторым линейным ограничениям равенства. Этот пример берет .
browneq.mat файл содержит матрицы Aeq и beq это представляет линейные ограничения Aeq*x = beq. Aeq матрица имеет 100 строк, представляющих 100 линейных ограничений (так Aeq 100 1000 матрица). Загрузите browneq.mat данные.
load browneq.matbrownfgh функция в конце этого примера реализует целевую функцию, включая ее градиент и Гессиан.
trust-region-reflective алгоритм требует, чтобы целевая функция включала градиент. Алгоритм принимает Гессиан в целевой функции. Установите опции включать всю производную информацию.
options = optimoptions('fmincon','Algorithm','trust-region-reflective',... 'SpecifyObjectiveGradient',true,'HessianFcn','objective');
Установите начальную точку на –1 для нечетных индексов и +1 для даже индексов.
n = 1000; x0 = -ones(n,1); x0(2:2:n) = 1;
Нет никаких границ, линейного неравенства или нелинейных ограничений, таким образом, устанавливает те параметры на [].
A = []; b = []; lb = []; ub = []; nonlcon = [];
Вызовите fmincon решать задачу.
[x,fval,exitflag,output] = ...
fmincon(@brownfgh,x0,A,b,Aeq,beq,lb,ub,nonlcon,options);Local minimum possible. fmincon stopped because the final change in function value relative to its initial value is less than the value of the function tolerance.
Исследуйте выходной флаг, значение целевой функции и нарушение ограничений.
disp(exitflag)
3
disp(fval)
205.9313
disp(output.constrviolation)
2.2027e-13
exitflag значение 3 также указывает на тот fmincon остановленный, потому что изменение в значении целевой функции было меньше допуска FunctionTolerance. Итоговое значение целевой функции дано fval. Ограничениям удовлетворяют, как вы видите в output.constrviolation, который показывает очень небольшое число.
Чтобы вычислить нарушение ограничений самостоятельно, выполните следующий код.
norm(Aeq*x-beq,Inf)
ans = 2.2027e-13
Следующий код создает brownfgh функция.
function [f,g,H] = brownfgh(x) %BROWNFGH Nonlinear minimization problem (function, its gradients % and Hessian). % Documentation example. % Copyright 1990-2019 The MathWorks, Inc. % Evaluate the function. n = length(x); y = zeros(n,1); i = 1:(n-1); y(i) = (x(i).^2).^(x(i+1).^2+1)+(x(i+1).^2).^(x(i).^2+1); f = sum(y); % Evaluate the gradient. if nargout > 1 i=1:(n-1); g = zeros(n,1); g(i) = 2*(x(i+1).^2+1).*x(i).*((x(i).^2).^(x(i+1).^2))+... 2*x(i).*((x(i+1).^2).^(x(i).^2+1)).*log(x(i+1).^2); g(i+1) = g(i+1)+... 2*x(i+1).*((x(i).^2).^(x(i+1).^2+1)).*log(x(i).^2)+... 2*(x(i).^2+1).*x(i+1).*((x(i+1).^2).^(x(i).^2)); end % Evaluate the (sparse, symmetric) Hessian matrix if nargout > 2 v = zeros(n,1); i = 1:(n-1); v(i) = 2*(x(i+1).^2+1).*((x(i).^2).^(x(i+1).^2))+... 4*(x(i+1).^2+1).*(x(i+1).^2).*(x(i).^2).*((x(i).^2).^((x(i+1).^2)-1))+... 2*((x(i+1).^2).^(x(i).^2+1)).*(log(x(i+1).^2)); v(i) = v(i)+4*(x(i).^2).*((x(i+1).^2).^(x(i).^2+1)).*((log(x(i+1).^2)).^2); v(i+1) = v(i+1)+... 2*(x(i).^2).^(x(i+1).^2+1).*(log(x(i).^2))+... 4*(x(i+1).^2).*((x(i).^2).^(x(i+1).^2+1)).*((log(x(i).^2)).^2)+... 2*(x(i).^2+1).*((x(i+1).^2).^(x(i).^2)); v(i+1) = v(i+1)+4*(x(i).^2+1).*(x(i+1).^2).*(x(i).^2).*((x(i+1).^2).^(x(i).^2-1)); v0 = v; v = zeros(n-1,1); v(i) = 4*x(i+1).*x(i).*((x(i).^2).^(x(i+1).^2))+... 4*x(i+1).*(x(i+1).^2+1).*x(i).*((x(i).^2).^(x(i+1).^2)).*log(x(i).^2); v(i) = v(i)+ 4*x(i+1).*x(i).*((x(i+1).^2).^(x(i).^2)).*log(x(i+1).^2); v(i) = v(i)+4*x(i).*((x(i+1).^2).^(x(i).^2)).*x(i+1); v1 = v; i = [(1:n)';(1:(n-1))']; j = [(1:n)';(2:n)']; s = [v0;2*v1]; H = sparse(i,j,s,n,n); H = (H+H')/2; end end