Diode

Кусочный или экспоненциальный диод

  • Библиотека:
  • Simscape / Электрический / Semiconductors & Converters / Полупроводники

  • Diode block

Описание

Блок Diode может представлять или кусочный линейный диод, экспоненциальный диод или диод со сведенной в таблицу кривой I-V.

Кусочный линейный диод

Кусочная линейная диодная модель является той же моделью как блок Simscape™ > Foundation Library> Electrical> Electrical Elements> Diode со сложением фиксированной емкости перехода и дополнительной динамики заряда. Если диод, прямое напряжение превышает значение, заданное в параметре Forward voltage, диод, ведет себя как линейный резистор с сопротивлением, заданным в параметре On resistance. В противном случае диод ведет себя как линейный резистор с маленькой проводимостью, заданной в параметре Off conductance. Нулевое напряжение через диод приводит к нулевому текущему течению.

Экспоненциальный диод

Экспоненциальная диодная модель представляет следующее отношение между диодом текущий I и диодным напряжением V:

I=IS(eqVNkTm11) V>BVI=IS(eq(V+Vz)kTm1eqVNkTm1) VBV

где:

  • q является элементарным зарядом на электроне (1.602176e–19 кулоны).

  • k является Постоянная Больцмана (1.3806503e–23 J/K).

  • BV является значением параметров Reverse breakdown voltage.

  • N является коэффициентом эмиссии.

  • IS является текущим насыщением.

  • Tm1 является температурой, при которой диодные параметры заданы, как задано значением параметров Measurement temperature.

Когда (q V / N k Tm1)> 80, замены блока eqVNkTm1 с (q V / N k Tm1 – 79) e80, который совпадает с градиентом диода, текущего в (q V / N k Tm1) = 80, и экстраполирует линейно. Когда (q V / N k Tm1) <–79, замены блока eqVNkTm1 с (q V / N k Tm1 + 80) электронный 79, который также совпадает с градиентом и экстраполирует линейно. Типичные электрические схемы не достигают этих экстремумов. Блок обеспечивает эту линейную экстраполяцию, чтобы помочь сходимости при решении для ограничений в процессе моделирования.

Когда вы выбираете Use parameters IS and N для параметра Parameterization вы задаете диод в терминах параметров Emission coefficient N и Saturation current IS. Когда вы выбираете Use two I-V curve data points для параметра Parameterization вы задаете два напряжения и текущие точки измерения на диоде, кривая I-V и блок выводят значения N и IS. Блок затем вычисляет IS и N можно следующим образом:

  • N=((V1V2)/Vt)/(log(I1)log(I2))

  • IS=(I1/(exp(V1/(NVt))1)+I2/(exp(V2/(NVt))1))/2

где:

  • Vt = k Tm1 / q.

  • V1 и V2 являются значениями в векторе Voltages [V1 V2].

  • I1 и I2 являются значениями в векторе Currents [I1 I2].

Когда вы выбираете Use an I-V data point and IS для параметра Parameterization затем блок вычисляет N можно следующим образом:

N=V1/(Vtlog(I1IS+1))

Когда вы выбираете Use an I-V data point and N для параметра Parameterization затем блок вычисляет IS можно следующим образом:

IS=I1/(exp(V1/(NVt)1))

Сведенный в таблицу диод

Чтобы смоделировать сведенный в таблицу диод, установите параметр Diode model на Tabulated I-V curve. Этот рисунок показывает реализацию сведенной в таблицу диодной опции:

При выборе этой параметризации необходимо обеспечить данные для прямого смещения только. Если диод противоположен смещенный, он моделируется как постоянная проводимость несостояния, заданная в параметре Off conductance вместо этого. Значение Off conductance должно быть меньше градиента форварда кривая I-V для маленьких положительных напряжений.

Блок реализует диод с помощью опции сплайн-интерполяции. Если диод превышает предоставленный спектр табличных данных, блок использует линейный метод экстраполяции в последней текущей напряжением точке данных.

Примечание

Сведенный в таблицу диод не моделирует противоположный отказ.

Емкость перехода

Блок предоставляет возможность включать емкость перехода:

  • Когда вы выбираете Include fixed or zero junction capacitance для параметра Junction capacitance фиксируется емкость.

  • Когда вы выбираете Use parameters CJO, VJ, M & FC для параметра Junction capacitance блок использует коэффициенты CJO, VJ, M и FC, чтобы вычислить емкость перехода, которая зависит от напряжения на переходе.

  • Когда вы выбираете Use C-V curve data points для параметра Junction capacitance блок использует три значения емкости на кривой емкости C-V, чтобы оценить CJO, VJ и M и использует эти значения с заданным значением FC, чтобы вычислить емкость перехода, которая зависит от напряжения на переходе. Блок вычисляет CJO, VJ и M можно следующим образом:

    • CJ0=C1((VR2VR1)/(VR2VR1(C2/C1)1/M))M

    • VJ=(VR2(C1/C2)1/M+VR1)/(1(C1/C2)1/M)

    • M=log(C3/C2)/log(VR2/VR3)

    где:

    • VR1, VR2 и VR3 являются значениями в векторе Reverse bias voltages [VR1 VR2 VR3].

    • C1, C2 и C3 являются значениями в векторе Corresponding capacitances [C1 C2 C3].

    Напряжения обратного смещения (заданный как положительные значения) должны удовлетворить VR3> VR2> VR1. Это означает, что емкости должны удовлетворить C1> C2> C3, когда обратное смещение расширяет область истощения и следовательно уменьшает емкость. Нарушение этих неравенств приводит к ошибке. Напряжения VR2 и VR3 должны хорошо быть вдали от потенциала Соединения VJ. Напряжение VR1 должно быть меньше потенциала Соединения VJ с типичным значением для VR1, являющегося 0,1 В.

Зависимая напряжением емкость перехода задана в терминах устройства хранения данных заряда конденсатора Qj как:

  • Для V <FC · VJ:

    Qj=CJ0(VJ/(M1))((1V/VJ)1M1)

  • Для VFC · VJ:

    Qj=CJ0F1+(CJ0/F2)(F3(VFCVJ)+0.5(M/VJ)(V2(FCVJ)2))

где:

  • F1=(VJ/(1M))(1(1FC)1M))

  • F2=(1FC)1+M))

  • F3=1FC(1+M)

Эти уравнения эквивалентны используемый в [2], за исключением того, что температурная зависимость VJ и FC не моделируется.

Заряжайте динамику

Для приложений, таких как коммутационные диоды это может быть важно для диодной динамики заряда модели. Когда прямосмещенному диоду применили противоположное напряжение через него, это занимает время для заряда, чтобы рассеяться и следовательно для диода, чтобы выключить. Время, потраченное для диода, чтобы выключить, получено, в основном, параметром времени транспортировки. Если диод выключен, любой остающийся заряд затем рассеивается, уровень, на котором это происходит, будучи определенным ко времени жизни поставщика услуг.

Блок Diode использует модель Lauritzen и мамы [3], чтобы получить эти эффекты. Это уравнения определения.

i=qEqMTM(1)
dqMdt+qMτqEqMTM=0(2)
qE=(τ+TM)i(3)
где:

  • i является текущим диодом.

  • qE является зарядом соединения.

  • qM является общим накопленным зарядом.

  • TM является временем транспортировки.

  • τ является временем жизни поставщика услуг.

  • vD является напряжением через диод.

  • vF является диодом прямое напряжение.

  • R является диодом на сопротивлении.

  • G является диодом от проводимости.

Эта диаграмма показы типичный реверсный режим текущая характеристика для диодного устройства.

где:

  • iRM является пиковым противоположным током.

  • iF является стартовым форвардом, текущим при измерении iRM.

  • a является скоростью изменения тока при измерении iRM.

  • trr является противоположным временем восстановления.

Таблицы данных для диодов заключают значения в кавычки для пикового противоположного тока для начальной буквы, вперед текущей и устойчивая скорость изменения тока. Таблица данных может также ввести значения в течение противоположного времени восстановления и общего обратного заряда.

Как блок вычисляет TM и Tau

Блок вычисляет время транспортировки TM и время жизни поставщика услуг τ на основе значений, вы вводите для параметров Charge Dynamics. Блок использует TM и τ, чтобы решить уравнения 1, 2 динамики заряда, и 3.

Во время начального текущего понижения реверсного режима диод все еще включен, и скорость изменения тока определяется внешней схемой тестирования.

Во-первых, блок использует уравнение 1, чтобы выполнить это вычисление.

iF+at=qEqMTM(4)

Затем это заменяет уравнением 4 в уравнение 2.

dqMdt+qMτ=iF+at(5)

Затем это решает уравнение 5 для qM,

qM=iFτaτ2+kexp(tτ)+aτt,(6)
где k является константой.

Когда t является нулем, i = iF и qM = τiF, потому что система находится в устойчивом состоянии.

Замена этими отношениями в уравнение 6 и решение уравнения дают k = aτ2.

Поэтому

qM=iFτ+aτ2(1exp(tτ)1)+aτt.(7)
Во время t = ts, током является iRM, и соединение заряжаются, qE является нулем.

Блок заменяет этими значениями в уравнение 1.

iRM=qMTM(8)
Блок перестраивает уравнение 8, чтобы решить для qM и заменяет результатом в уравнение 7.
TMiRM=iFτ+aτ2(1exp(tsτ)1)+aτts(9)

Затем блок описывает время ts в терминах iRM, iF и a.

ts=iRMiFa(10)

Рассмотрите диодное восстановление, то есть, когда t> ts. Диод противоположен смещенный и текущий, и заряд соединения являются эффективно нулевыми.

Ток задан этим уравнением.

i=iRMexp[(tts)τrr],(11)

где:

1τrr=1τ+1TM.(12)

Блок теперь связывает выражение в уравнении 12 к противоположному времени восстановления trr.

Когда t=iRMa+trr, ток iRM10.

Поэтому

exp(ttsτrr)=0.1(13)
и
trr=τrrlog(10)+iRMa.(14)

Блок использует уравнения 9 и 14, чтобы вычислить значения для TM и τ. Вычисление использует итеративную схему из-за экспоненциального термина в уравнении 9.

Альтернативы определению trr непосредственно

В дополнение к разрешению вам задать противоположное время восстановления trr непосредственно, блок поддерживает две альтернативной параметризации. Блок может вывести trr из любого из этих параметров:

  • Противоположное время восстановления расширяет факторный λ

  • Противоположный Qrr обратного заряда, когда таблица данных задает это значение вместо противоположного времени восстановления.

Отношение между противоположным фрагментом времени восстановления факторный λ и trr описывается уравнением

λ=trraiRM.

Противоположное время восстановления должно быть больше iRMa и типичное значение 3(iRMa).

Поэтому типичное значение для λ равняется 3. λ должен быть больше 1.

Противоположный Qrr обратного заряда является интегралом в зависимости от времени противоположного тока от точки, где текущие движения, отрицательные, пока это не затухает назад, чтобы обнулить.

Первоначальный сбор, ко времени ts (как показано на рисунке), описывается этим уравнением:

Qs=12(iRM)iRMa.(15)

Уравнение 11 Integrating дает заряд между временами ts и inf. Этот заряд равен

τrriRM.

Поэтому общий противоположный обратный заряд дан этим уравнением:

Qrr=iRM22a+τrriRM.(16)

Уравнение 16 Rearranging, чтобы решить для τrr и замены результатом в уравнение 14 дает уравнение, которое описывает trr в терминах Qrr:

trr=(QrriRM+iRM2a)log(10)+iRMa.

Температурная зависимость

Поведение по умолчанию для блока Diode состоит в том, что зависимость от температуры не моделируется, и устройство симулировано при температуре, для которой вы обеспечиваете параметры блоков. Экспоненциальная диодная модель содержит несколько опций для моделирования зависимости диодного отношения текущего напряжения на температуре в процессе моделирования. Температурная зависимость емкости перехода не моделируется, потому что это оказывает намного меньшее влияние.

Когда включая температурную зависимость, диодное уравнение определяющего остается то же самое. Значение температуры измерения, Tm1, заменяется температурой симуляции, Ts. Текущее насыщение, IS, становится функцией температуры согласно следующему уравнению:

ISTs=ISTm1(Ts/Tm1)XTI/Nexp(EGNkTs(1Ts/Tm1))

где:

  • Tm1 является температурой, при которой диодные параметры заданы, как задано значением параметров Measurement temperature.

  • Ts является температурой симуляции.

  • ISTm1 является насыщением, текущим при температуре измерения.

  • ISTs является насыщением, текущим при температуре симуляции. Это - текущее значение насыщения, используемое в стандартном диодном уравнении, когда температурная зависимость моделируется.

  • EG является энергетическим кризисом для полупроводникового типа, измеренного в джоулях (Дж). Значение для кремния обычно принимается, чтобы быть 1,11 эВ, где 1 эВ является 1.602e-19.

  • XTI является насыщением текущая температурная экспонента. Это обычно устанавливается в 3,0 для диодов p-n перехода, и 2.0 для Диодов с барьером Шоттки.

  • N является коэффициентом эмиссии.

  • k является Постоянная Больцмана (1.3806503e–23 J/K).

Соответствующие значения для XTI и EG зависят от типа диода и полупроводникового используемого материала. Значения по умолчанию для конкретных материальных типов и диода вводят получение аппроксимированное поведение с температурой. Блок обеспечивает значения по умолчанию для общих типов диода.

На практике, значения XTI и потребности EG, настраивающейся, чтобы смоделировать точное поведение конкретного диода. Некоторые производители заключают эти настроенные значения в кавычки в Списке соединений SPICE, и можно прочитать соответствующие значения. В противном случае можно определить улучшенные оценки для EG при помощи заданной таблицей данных точки данных текущего напряжения при более высокой температуре. Блок предоставляет возможность параметризации для этого. Это также дает опцию определения насыщения, текущего в более высоком температурном ISTm2 непосредственно.

Можно также настроить значения XTI и EG сами, чтобы совпадать с данными лаборатории для конкретного устройства. Можно использовать программное обеспечение Simulink® Design Optimization™, чтобы помочь настроить значения для XTI и EG.

Внимание

Поведение температуры устройства также зависит от коэффициента эмиссии. Несоответствующее значение для коэффициента эмиссии может дать неправильную температурную зависимость, потому что текущее насыщение является функцией отношения EG к N.

При определении конечного противоположного напряжения пробоя (BV) затем значение противоположного BV модулируется противоположным аварийным температурным коэффициентом TCV (заданное использование параметра Reverse breakdown voltage temperature coefficient, dBV/dT):

BVTs = BVTm1TCV · (TsTm1)(17)

Моделирование вариантов

Блок обеспечивает тепловой вариант моделирования. Чтобы выбрать вариант, щелкните правой кнопкой по блоку по своей модели. Из контекстного меню выберите Simscape> Block choices, и затем один из этих вариантов:

  • No thermal port — Этот вариант не симулирует выделение тепла в устройстве. Этим вариантом является значение по умолчанию.

  • Show thermal port — Этот вариант содержит тепловой порт, который позволяет вам моделировать тепло, которое вырабатывают потери проводимости. Для вычислительной эффективности тепловое состояние не влияет на электрическое поведение блока. Тепловой порт скрыт по умолчанию. Когда вы выбираете тепловой вариант блока, тепловой порт появляется.

Тепловой порт

Блок имеет дополнительный тепловой порт, скрытый по умолчанию. Чтобы осушить тепловой порт, щелкните правой кнопкой по блоку по своей модели, и затем из контекстного меню выбирают Simscape> Block choices> Show thermal port. Это действие отображает тепловой порт H на значке блока и отсоединяет параметры Thermal Port.

Используйте тепловой порт, чтобы симулировать эффекты выработанного тепла и температуры устройства. Для получения дополнительной информации об использовании тепловых портов и на параметрах Thermal Port, смотрите Термальные эффекты Симуляции в Полупроводниках.

Переменные

Используйте раздел Variables интерфейса блока, чтобы установить приоритет и начальные целевые значения для переменных в блоках до симуляции. Для получения дополнительной информации смотрите Приоритет Набора и Начальную Цель для Переменных в блоках.

Допущения и ограничения

  • Когда вы выбираете Use two I-V curve data points для параметра Parameterization выберите пару напряжений около диодного поворота - на напряжении. Как правило, это находится в диапазоне от 0,05 до 1 В. Используя значения за пределами этой области может привести к числовым проблемам и плохим оценкам для IS и N.

  • Блок не составляет температурно-зависимые эффекты на емкости перехода.

  • Вы, возможно, должны использовать ненулевые омические значения сопротивления и емкости перехода, чтобы предотвратить числовые проблемы симуляции, но симуляция может запуститься быстрее с этими обнуленными значениями.

  • Вы не можете использовать Tabulated I-V curve параметризация, чтобы смоделировать противоположный отказ.

Порты

Сохранение

развернуть все

Электрический порт сохранения сопоставлен с анодом.

Электрический порт сохранения сопоставлен с катодом.

Тепловой порт сохранения. Тепловой порт является дополнительным и является скрытым по умолчанию. Чтобы включить этот порт, выберите вариант, который включает тепловой порт.

Параметры

развернуть все

Основной

Выберите одну из этих диодных моделей:

  • Piecewise Linear — Используйте кусочную линейную модель для диода, как описано в Кусочном Линейном Диоде. Это - метод по умолчанию.

  • Exponential — Используйте стандартную экспоненциальную модель для диода, как описано в Экспоненциальном Диоде.

  • Tabulated I-V curve — Используйте сведенное в таблицу прямое смещение данные I-V плюс фиксированное обратное смещение от проводимости, как описано в Сведенном в таблицу Диоде.

Минимальное напряжение, которое должно быть применено для диода, чтобы стать прямосмещенным.

Зависимости

Чтобы включить этот параметр, установите Diode model на Piecewise linear.

Сопротивление диода, когда это прямосмещенно.

Зависимости

Чтобы включить этот параметр, установите Diode model на Piecewise linear.

Проводимость диода, когда это противоположно смещенный.

Зависимости

Чтобы включить этот параметр, установите Diode model на Piecewise linear или Tabulated I-V curve.

Выберите один из следующих методов для параметризации модели:

  • Use two I-V curve data points — Задайте результаты измерений в двух точках на диоде кривая I-V. Это - метод по умолчанию.

  • Use parameters IS and N — Задайте текущее насыщение и коэффициент эмиссии.

  • Use an I-V data point and IS — Задайте результаты измерений в одной точке на диоде кривая I-V в сочетании с текущим насыщением.

  • Use an I-V data point and N — Задайте результаты измерений в одной точке на диоде кривая I-V в сочетании с коэффициентом эмиссии.

Зависимости

Чтобы включить этот параметр, установите Diode model на Exponential.

Вектор из текущих значений в двух точках на диоде кривая I-V, что использование блока, чтобы вычислить IS и N.

Зависимости

Чтобы включить этот параметр, установите Diode model на Exponential и Parameterization к Use two I-V curve data points.

Вектор из значений напряжения в двух точках на диоде кривая I-V, что использование блока, чтобы вычислить IS и N.

Зависимости

Чтобы включить этот параметр, установите Diode model на Exponential и Parameterization к Use two I-V curve data points.

Величина тока, к которому идеальное диодное уравнение приближается асимптотически для очень больших уровней обратного смещения.

Зависимости

Чтобы включить этот параметр, установите Diode model на Exponential и Parameterization к Use parameters IS and N или Use an I-V data point and IS.

Диодный коэффициент эмиссии или фактор идеальности.

Зависимости

Чтобы включить этот параметр, установите Diode model на Exponential и Parameterization к Use parameters IS and N или Use an I-V data point and IS.

Текущее значение в точке на диоде кривая I-V, которую блок использует для вычислений. В зависимости от значения Parameterization блок использует этот параметр, чтобы вычислить или N или IS.

Зависимости

Чтобы включить этот параметр, установите Diode model на Exponential и Parameterization к Use an I-V data point and IS или Use an I-V data point and N.

Значение напряжения в точке на диоде кривая I-V, которую блок использует для вычислений.

Зависимости

Чтобы включить этот параметр, установите Diode model на Exponential и Parameterization к Use an I-V data point and IS или Use an I-V data point and N.

Серийное диодное сопротивление связи.

Зависимости

Чтобы включить этот параметр, установите Diode model на Exponential.

Температурный Tm1, в котором были измерены IS или кривая I-V.

Передайте токи. Этот параметр должен быть вектором по крайней мере из трех неотрицательных элементов.

Зависимости

Чтобы включить этот параметр, установите Diode model на Tabulated I-V curve.

Вектор из температур перехода. Этот параметр должен быть вектором по крайней мере из двух элементов.

Зависимости

Чтобы включить этот параметр, установите Diode model на Tabulated I-V curve.

Вектор из прямых напряжений. Этот параметр должен быть вектором по крайней мере из трех неотрицательных значений.

Зависимости

Чтобы включить этот параметр, установите Diode model на Tabulated I-V curve.

Количество диодов, соединенных последовательно между портами блока + и . Несколько диодов не моделируются. Скорее каждый диод имеет все связанные с напряжением количества, масштабируемые фактором, который вы задаете.

Количество параллельных диодов или количество параллельных путей, сформированных подключенными последовательно диодами, между портами блока + и . Несколько диодов не моделируются. Скорее каждый диод имеет все текущие связанные количества, масштабируемые фактором, который вы задаете.

Отказ

Сопротивление диода, когда напряжение меньше значения Reverse breakdown voltage.

Зависимости

Чтобы включить этот параметр, установите Diode model на Piecewise linear.

Противоположное напряжение, ниже которого можно смоделировать быстрое увеличение проводимости, которая происходит в диодном отказе. Значением по умолчанию является Inf V, который эффективно не использует противоположный отказ из модели.

Емкость

Метод для моделирования емкости перехода:

  • Fixed or zero junction capacitance — Смоделируйте емкость перехода как фиксированное значение.

  • Use C-V curve data points — Задайте результаты измерений в трех точках на диоде кривая C-V.

  • Use parameters CJ0, VJ, M & FC — Задайте емкость перехода нулевого смещения, потенциал соединения, градуируя коэффициент и коэффициент емкости истощения прямого смещения.

Фиксированное значение емкости перехода.

Зависимости

Чтобы включить этот параметр, установите Capacitance на Fixed or zero junction capacitance.

Вектор из значений напряжения обратного смещения в трех точках на диоде кривая C-V, что использование блока, чтобы вычислить CJ0, VJ и M.

Зависимости

Чтобы включить этот параметр, установите Capacitance на Use C-V curve data points.

Вектор из значений емкости в трех точках на диоде кривая C-V, что использование блока, чтобы вычислить CJ0, VJ и M.

Зависимости

Чтобы включить этот параметр, установите Capacitance на Use C-V curve data points.

Значение емкости, помещенной параллельно с проводимостью текущий термин.

Зависимости

Чтобы включить этот параметр, установите Capacitance на Use parameters CJ0, VJ, M & FC.

Потенциал соединения.

Зависимости

Чтобы включить этот параметр, установите Capacitance на Use parameters CJ0, VJ, M & FC.

Классификация коэффициента.

Зависимости

Чтобы включить этот параметр, установите Capacitance на Use parameters CJ0, VJ, M & FC.

Подходящий коэффициент, который определяет количество уменьшения емкости истощения с приложенным напряжением.

Зависимости

Чтобы включить этот параметр, установите Capacitance на Use parameters CJ0, VJ, M & FC.

Выберите один из следующих методов для параметризации динамики заряда:

  • Do not model charge dynamics — Не включайте моделирование динамики заряда. Это - метод по умолчанию.

  • Use peak reverse current and stretch factor — Движущие силы заряда модели путем введения значений для пикового противоположного текущего iRM и фактора фрагмента λ плюс информация о начальной букве передают текущий и скорость изменения тока, используемого в схеме тестирования при измерении iRM и trr.

  • Use peak reverse current and reverse recovery time — Движущие силы заряда модели путем введения значений для пикового противоположного текущего iRM и противоположное время восстановления trr плюс информация о начальной букве передают текущий и скорость изменения тока, используемого в схеме тестирования при измерении iRM и trr. Используйте эту опцию, если таблица данных производителя не вводит значения в течение времени транспортировки TT и время жизни поставщика услуг τ.

  • Use peak reverse current and reverse recovery charge — Движущие силы заряда модели путем введения значений для пикового противоположного текущего iRM и противоположного обратного заряда Qrr плюс информация о начальной букве передают текущий и скорость изменения тока, используемого в схеме тестирования при измерении iRM и trr.

  • Use transit time and carrier lifetime — Динамика заряда модели путем введения значений в течение времени транспортировки TT и время жизни поставщика услуг τ.

Пиковый противоположный ток измеряется внешней схемой тестирования. Это значение должно быть меньше нуля.

Зависимости

Чтобы включить этот параметр, установите Charge dynamics на Use peak reverse current and stretch factor, Use peak reverse current and reverse recovery time, или Use peak reverse current and reverse recovery charge.

Начальная буква, вперед текущая при измерении пикового противоположного тока. Это значение должно быть больше нуля.

Зависимости

Чтобы включить этот параметр, установите Charge dynamics на Use peak reverse current and stretch factor, Use peak reverse current and reverse recovery time, или Use peak reverse current and reverse recovery charge.

Скорость изменения тока при измерении пикового противоположного тока. Это значение должно быть меньше нуля.

Зависимости

Чтобы включить этот параметр, установите Charge dynamics на Use peak reverse current and stretch factor, Use peak reverse current and reverse recovery time, или Use peak reverse current and reverse recovery charge.

Значение, что использование блока, чтобы вычислить Reverse recovery time, trr. Это значение должно быть больше 1. Значением по умолчанию является 3.

Определение фактора фрагмента является более легким способом параметрировать противоположное время восстановления, чем определение противоположного обратного заряда. Чем больше значение фактора фрагмента, тем дольше это берет для противоположного восстановления, текущего, чтобы рассеяться.

Зависимости

Чтобы включить этот параметр, установите Charge dynamics на Use peak reverse current and stretch factor.

Время между точкой, куда ток первоначально идет, чтобы обнулить, когда диод выключает, и точка где текущие падения меньше чем к десяти процентам пикового противоположного тока. Значением по умолчанию является 115 ns.

Значение параметра Reverse recovery time, trr должно быть больше значения параметра Peak reverse current, iRM, разделенного на значение параметра Rate of change of current when measuring iRM.

Зависимости

Чтобы включить этот параметр, установите Charge dynamics на Use peak reverse current and reverse recovery time.

Значение, что использование блока, чтобы вычислить Reverse recovery time, trr. Используйте этот параметр, если таблица данных для вашего диодного устройства задает значение для противоположного обратного заряда вместо значения в течение противоположного времени восстановления.

Противоположный обратный заряд является общим зарядом, который продолжает рассеиваться, когда диод выключает. Значение должно быть меньше i2RM2a,

где:

  • iRM является значением, заданным для Peak reverse current, iRM.

  • a является значением, заданным для Rate of change of current when measuring iRM.

Зависимости

Чтобы включить этот параметр, установите Charge dynamics на Specify reverse recovery charge.

Мера того, сколько времени это берет поставщиков услуг, чтобы пересечь диодное соединение.

Зависимости

Чтобы включить этот параметр, установите Charge dynamics на Use transit time and carrier lifetime.

Мера того, сколько времени это берет для поставщиков услуг, чтобы рассеяться однажды диод, больше не проводит. Значением по умолчанию является 100 ns.

Зависимости

Чтобы включить этот параметр, установите Charge dynamics на Use transit time and carrier lifetime.

Температурная зависимость

Этот раздел применим к Exponential и Tabulated I-V curve диодные модели только.

Эта таблица показывает, как видимость установки Temperature Dependence зависит от того, как вы конфигурируете параметр Diode model в установке Main и осушаете ли вы тепловой порт. Чтобы изучить, как считать эту таблицу, смотрите Зависимости от Параметра

Видимость температурной установки зависимости

Параметры, опции и видимость установки
Модель Diode
Piecewise linearExponentialTabulated I-V curve
Тепловой портТепловой портТепловой порт
Not exposedExposedNot exposedExposedNot exposedExposed
СкрытыйСкрытыйВидимыйВидимыйВидимыйСкрытый

Выберите один из следующих методов для температурной параметризации зависимости:

  • None - Use characteristics at parameter measurement temperature — Температурная зависимость не моделируется, или модель симулирована в T m1 температуры измерения (как задано параметром Measurement temperature на вкладке Main). Это - метод по умолчанию.

  • Use an I-V data point at second measurement temperature T2 — Если вы выбираете эту опцию, вы задаете второй T m2 температуры измерения, и текущие значения и значения напряжения при этой температуре. Модель использует эти значения, наряду со значениями параметров в первом T m1 температуры измерения, чтобы вычислить значение энергетического кризиса.

  • Specify saturation current at second measurement temperature T2 — Если вы выбираете эту опцию, вы задаете второй T m2 температуры измерения и текущее значение насыщения при этой температуре. Модель использует эти значения, наряду со значениями параметров в первом T m1 температуры измерения, чтобы вычислить значение энергетического кризиса.

  • Specify the energy gap EG — Задайте значение энергетического кризиса непосредственно.

Задайте диод текущее значение I1, когда напряжением будет V1 при второй температуре измерения.

Зависимости

Чтобы включить этот параметр, установите Parameterization на Use an I-V data point at second measurement temperature.

Задайте диодное напряжение значение V1, когда током будет I1 при второй температуре измерения.

Зависимости

Чтобы включить этот параметр, установите Parameterization на Use an I-V data point at second measurement temperature.

Задайте насыщение текущее значение IS при второй температуре измерения.

Зависимости

Чтобы включить этот параметр, установите Parameterization на Specify saturation current at second measurement temperature.

Задайте значение для второй температуры измерения.

Зависимости

Чтобы включить этот параметр, установите Parameterization на Use an I-V data point at second measurement temperature или Specify saturation current at second measurement temperature.

Выберите значение для энергетического кризиса из списка предопределенных опций или задайте пользовательское значение:

  • Use nominal value for silicon (EG=1.11eV) Это значение по умолчанию.

  • Use nominal value for 4H-SiC silicon carbide (EG=3.23eV)

  • Use nominal value for 6H-SiC silicon carbide (EG=3.00eV)

  • Use nominal value for germanium (EG=0.67eV)

  • Use nominal value for gallium arsenide (EG=1.43eV)

  • Use nominal value for selenium (EG=1.74eV)

  • Use nominal value for Schottky barrier diodes (EG=0.69eV)

  • Specify a custom value — Если вы выбираете эту опцию, параметр Energy gap, EG, кажется, в диалоговом окне, позволяет вам задать пользовательское значение для EG.

Зависимости

Чтобы включить этот параметр, установите Parameterization на Specify the energy gap EG.

Задайте пользовательское значение для энергетического кризиса, EG.

Зависимости

Чтобы включить этот параметр, установите Energy gap parameterization на Specify a custom value.

Выберите одну из следующих опций, чтобы задать насыщение текущее температурное значение экспоненты:

  • Use nominal value for pn-junction diode (XTI=3) Это значение по умолчанию.

  • Use nominal value for Schottky barrier diode (XTI=2)

  • Specify a custom value — Если вы выбираете эту опцию, параметр Saturation current temperature exponent, XTI, кажется, в диалоговом окне, позволяет вам задать пользовательское значение для XTI.

Зависимости

Чтобы включить этот параметр, установите Parameterization на Use an I-V data point at second measurement temperature, Specify saturation current at second measurement temperature, или Specify the energy gap, EG.

Задайте пользовательское значение для насыщения текущая температурная экспонента, XTI.

Зависимости

Чтобы включить этот параметр, установите Parameterization на Use an I-V data point at second measurement temperature, Specify saturation current at second measurement temperature, или Specify the energy gap, EG и Saturation current temperature exponent parameterization к Specify a custom value.

Модулируйте противоположное напряжение пробоя BV. Если вы задаете противоположное напряжение пробоя BV как положительное количество, положительное значение для TCV подразумевает, что величина противоположного напряжения пробоя уменьшается с температурой.

Зависимости

Чтобы включить этот параметр, установите Parameterization на Use an I-V data point at second measurement temperature, Specify saturation current at second measurement temperature, или Specify the energy gap, EG.

Задайте значение для температурного T s, в котором должно быть симулировано устройство.

Зависимости

Чтобы включить этот параметр, установите Parameterization на Use an I-V data point at second measurement temperature, Specify saturation current at second measurement temperature, или Specify the energy gap, EG.

Тепловой порт

Используйте тепловой порт, чтобы симулировать эффекты выработанного тепла и температуры устройства. Для получения дополнительной информации об использовании тепловых портов и на параметрах Thermal Port, смотрите Термальные эффекты Симуляции в Полупроводниках.

Примеры модели

Ссылки

[1] MH. Ахмед и П.Дж. Спридбери. Аналоговая и цифровая электроника для инженеров. 2-й Выпуск. Кембридж, Великобритания: Издательство Кембриджского университета, 1984.

[2] Г. Массобрио и П. Антоньетти. Полупроводниковое моделирование устройства с SPICE. 2-й выпуск. Нью-Йорк: McGraw-Hill, 1993.

[3] Lauritzen, отделение связи и К.Л. Ма. “Простая Диодная Модель с Противоположным Восстановлением”. IEEE® Transactions на Силовой электронике. Издание 6, № 2, апрель 1991, стр 188–191.

Расширенные возможности

Генерация кода C/C++
Генерация кода C и C++ с помощью Simulink® Coder™.

Введенный в R2008a