Получите вычислительную модель от представления функции ценности или политики
Создайте среду с непрерывным пространством действий и получите его спецификации наблюдений и спецификации действия. В данном примере загрузите среду, используемую в примере, Обучают Агента DDPG Управлять Двойной Системой Интегратора.
Загрузите предопределенную среду.
env = rlPredefinedEnv("DoubleIntegrator-Continuous")env =
DoubleIntegratorContinuousAction with properties:
Gain: 1
Ts: 0.1000
MaxDistance: 5
GoalThreshold: 0.0100
Q: [2x2 double]
R: 0.0100
MaxForce: Inf
State: [2x1 double]
Получите спецификации наблюдений и спецификации действия.
obsInfo = getObservationInfo(env); actInfo = getActionInfo(env);
Создайте агента PPO из спецификаций наблюдений среды и спецификаций действия.
agent = rlPPOAgent(obsInfo,actInfo);
Чтобы изменить глубокие нейронные сети в агенте обучения с подкреплением, необходимо сначала извлечь представления актёра и критика.
actor = getActor(agent); critic = getCritic(agent);
Извлеките глубокие нейронные сети от обоих представления актёра и критика.
actorNet = getModel(actor); criticNet = getModel(critic);
Чтобы просмотреть сеть, используйте plot функция. Например, просмотрите сеть агента.
plot(actorNet)

Можно изменить агента и сети критика и сохранить их назад в агента. Чтобы изменить сети, можно использовать приложение Deep Network Designer. Открыть приложение для каждого объединяется в сеть, используйте следующие команды.
deepNetworkDesigner(criticNet) deepNetworkDesigner(actorNet)
В Deep Network Designer измените сети. Например, можно добавить дополнительные слои в сеть. Когда вы измените сети, не изменяйте входные и выходные слои сетей, возвращенных getModel. Для получения дополнительной информации о создании сетей смотрите Сети Сборки с Deep Network Designer.
Чтобы экспортировать модифицированные структуры сети в рабочую область MATLAB®, сгенерируйте код для создания новых сетей и запустите этот код из командной строки. Не используйте опцию экспорта в Deep Network Designer. Для примера, который показывает, как сгенерировать и запустить код, смотрите, Создают Агента Используя Deep Network Designer и Обучаются Используя Наблюдения Изображений.
В данном примере код для создания модифицированного агента и сетей критика находится в createModifiedNetworks.m.
createModifiedNetworks
Каждая из модифицированных сетей включает дополнительный fullyConnectedLayer и reluLayer в их выходе path. Просмотрите модифицированную сеть агента.
plot(modifiedActorNet)

После экспорта сетей вставьте сети в представления актёра и критика.
actor = setModel(actor,modifiedActorNet); critic = setModel(critic,modifiedCriticNet);
Наконец, вставьте модифицированные представления актёра и критика в объекты критика и агента.
agent = setActor(agent,actor); agent = setCritic(agent,critic);
rep — Политика или представление функции ценностиrlValueRepresentation объект | rlQValueRepresentation объект | rlDeterministicActorRepresentation объект | rlStochasticActorRepresentation объектПолитика или представление функции ценности в виде одного из следующего:
rlValueRepresentation объект — представление Функции ценности
rlQValueRepresentation объект — представление Q-функции-ценности
rlDeterministicActorRepresentation объект — Представление актера с детерминированными действиями
rlStochasticActorRepresentation объект — Представление актера со стохастическими действиями
Чтобы создать политику или представление функции ценности, используйте один из следующих методов:
Примечание
Для агентов больше чем с одним критиком, таких как TD3 и агенты SAC, необходимо вызвать getModel для каждого представления критика индивидуально, вместо вызова getModel для массива возвращенных getCritic.
critics = getCritic(myTD3Agent); criticNet1 = getModel(critics(1)); criticNet2 = getModel(critics(2));
model — Вычислительная модельDAGNetwork возразите | rlTable возразите | 1 2 массив ячеекВычислительная модель, возвращенная как одно из следующего:
Глубокая нейронная сеть, заданная как DAGNetwork объект
rlTable объект
1 2 массив ячеек, который содержит указатель на функцию для пользовательской основной функции и параметров основной функции
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.