Потеря классификации перезамены для наивного классификатора Байеса
возвращает Ущерб Классификации от перезамены (L
= resubLoss(Mdl
)L
) или потеря классификации в выборке, для наивного классификатора Байеса Mdl
использование обучающих данных сохранено в Mdl.X
и соответствующие метки класса сохранены в Mdl.Y
.
Потеря классификации (L
) обобщение или качественная мера по перезамене. Его интерпретация зависит от схемы взвешивания и функции потерь; в целом лучшие классификаторы дают к меньшим значениям классификации потерь.
Определите ошибку классификации в выборке (потеря перезамены) наивного классификатора Байеса. В общем случае меньшая потеря указывает на лучший классификатор.
Загрузите fisheriris
набор данных. Создайте X
как числовая матрица, которая содержит четыре лепестковых измерения для 150 ирисовых диафрагм. Создайте Y
как массив ячеек из символьных векторов, который содержит соответствующие ирисовые разновидности.
load fisheriris
X = meas;
Y = species;
Обучите наивный классификатор Байеса с помощью предикторов X
и класс маркирует Y
. Методические рекомендации должны задать имена классов. fitcnb
принимает, что каждый предиктор условно и нормально распределен.
Mdl = fitcnb(X,Y,'ClassNames',{'setosa','versicolor','virginica'})
Mdl = ClassificationNaiveBayes ResponseName: 'Y' CategoricalPredictors: [] ClassNames: {'setosa' 'versicolor' 'virginica'} ScoreTransform: 'none' NumObservations: 150 DistributionNames: {'normal' 'normal' 'normal' 'normal'} DistributionParameters: {3x4 cell} Properties, Methods
Mdl
обученный ClassificationNaiveBayes
классификатор.
Оцените ошибку классификации в выборке.
L = resubLoss(Mdl)
L = 0.0400
Наивный классификатор Байеса неправильно классифицирует 4% учебных наблюдений.
Загрузите fisheriris
набор данных. Создайте X
как числовая матрица, которая содержит четыре лепестковых измерения для 150 ирисовых диафрагм. Создайте Y
как массив ячеек из символьных векторов, который содержит соответствующие ирисовые разновидности.
load fisheriris
X = meas;
Y = species;
Обучите наивный классификатор Байеса с помощью предикторов X
и класс маркирует Y
. Методические рекомендации должны задать имена классов. fitcnb
принимает, что каждый предиктор условно и нормально распределен.
Mdl = fitcnb(X,Y,'ClassNames',{'setosa','versicolor','virginica'});
Mdl
обученный ClassificationNaiveBayes
классификатор.
Оцените потерю перезамены логита.
L = resubLoss(Mdl,'LossFun','logit')
L = 0.3310
Средняя потеря логита в выборке - приблизительно 0,33.
Mdl
— Полный, обученный наивный классификатор БайесаClassificationNaiveBayes
модельПолный, обученный наивный классификатор Байеса в виде ClassificationNaiveBayes
модель, обученная fitcnb
.
LossFun
— Функция потерь'classiferror'
(значение по умолчанию) | 'binodeviance'
| 'exponential'
| 'hinge'
| 'logit'
| 'mincost'
| 'quadratic'
| указатель на функциюФункция потерь в виде встроенного имени функции потерь или указателя на функцию.
В следующей таблице перечислены доступные функции потерь. Задайте тот с помощью его соответствующего вектора символов или строкового скаляра.
Значение | Описание |
---|---|
'binodeviance' | Биномиальное отклонение |
'classiferror' | Ошибка классификации |
'exponential' | Экспоненциал |
'hinge' | Стержень |
'logit' | Логистический |
'mincost' | Минимальный ожидал стоимость misclassification (для классификационных оценок, которые являются апостериорными вероятностями), |
'quadratic' | Квадратичный |
'mincost'
подходит для классификационных оценок, которые являются апостериорными вероятностями. Наивные модели Bayes возвращают апостериорные вероятности как классификационные оценки по умолчанию (см. predict
).
Задайте свою собственную функцию с помощью обозначения указателя на функцию.
Предположим тот n
количество наблюдений в X
и K
количество отличных классов (numel(Mdl.ClassNames)
, где Mdl
входная модель). Ваша функция должна иметь эту подпись
lossvalue = lossfun
(C,S,W,Cost)
Выходной аргумент lossvalue
скаляр.
Вы задаете имя функции (lossfun
).
C
n
- K
логическая матрица со строками, указывающими на класс, которому принадлежит соответствующее наблюдение. Порядок следования столбцов соответствует порядку класса в Mdl.ClassNames
.
Создайте C
установкой C(p,q) = 1
если наблюдение p
находится в классе q
, для каждой строки. Установите все другие элементы строки p
к 0
.
S
n
- K
числовая матрица классификационных оценок. Порядок следования столбцов соответствует порядку класса в Mdl.ClassNames
S
матрица классификационных оценок, похожих на выход predict
.
W
n
- 1 числовой вектор из весов наблюдения. Если вы передаете W
, программное обеспечение нормирует веса, чтобы суммировать к 1
.
Cost
K
- K
числовая матрица затрат misclassification. Например, Cost = ones(K) - eye(K)
задает стоимость 0
для правильной классификации и 1
для misclassification.
Задайте свое использование функции 'LossFun', @
.lossfun
Для получения дополнительной информации о функциях потерь смотрите Потерю Классификации.
Типы данных: char |
string
| function_handle
Функции Classification loss измеряют прогнозирующую погрешность моделей классификации. Когда вы сравниваете тот же тип потери среди многих моделей, более низкая потеря указывает на лучшую прогнозную модель.
Рассмотрите следующий сценарий.
L является средневзвешенной потерей классификации.
n является объемом выборки.
Для бинарной классификации:
yj является наблюдаемой меткой класса. Программные коды это как –1 или 1, указывая на отрицательный или положительный класс, соответственно.
f (Xj) является необработанной классификационной оценкой для наблюдения (строка) j данных о предикторе X.
mj = yj f (Xj) является классификационной оценкой для классификации наблюдения j в класс, соответствующий yj. Положительные значения mj указывают на правильную классификацию и не способствуют очень средней потере. Отрицательные величины mj указывают на неправильную классификацию и значительно способствуют средней потере.
Для алгоритмов, которые поддерживают классификацию мультиклассов (то есть, K ≥ 3):
yj* является вектором из K – 1 нуль, с 1 в положении, соответствующем истинному, наблюдаемому классу yj. Например, если истинный класс второго наблюдения является третьим классом и K = 4, то y 2* = [0 0 1 0] ′. Порядок классов соответствует порядку в ClassNames
свойство входной модели.
f (Xj) является длиной вектор K из музыки класса к наблюдению j данных о предикторе X. Порядок баллов соответствует порядку классов в ClassNames
свойство входной модели.
mj = yj* ′ f (Xj). Поэтому mj является скалярной классификационной оценкой, которую модель предсказывает для истинного, наблюдаемого класса.
Весом для наблюдения j является wj. Программное обеспечение нормирует веса наблюдения так, чтобы они суммировали к соответствующей предшествующей вероятности класса. Программное обеспечение также нормирует априорные вероятности, таким образом, они суммируют к 1. Поэтому
Учитывая этот сценарий, следующая таблица описывает поддерживаемые функции потерь, которые можно задать при помощи 'LossFun'
аргумент пары "имя-значение".
Функция потерь | Значение LossFun | Уравнение |
---|---|---|
Биномиальное отклонение | 'binodeviance' | |
Экспоненциальная потеря | 'exponential' | |
Ошибка классификации | 'classiferror' | Ошибка классификации является взвешенной частью неправильно классифицированных наблюдений где метка класса, соответствующая классу с максимальной апостериорной вероятностью. I {x} является функцией индикатора. |
Потеря стержня | 'hinge' | |
Потеря логита | 'logit' | |
Минимальная стоимость | 'mincost' | Программное обеспечение вычисляет взвешенную минимальную стоимость с помощью этой процедуры для наблюдений j = 1..., n.
Взвешенная, средняя, минимальная потеря стоимости |
Квадратичная потеря | 'quadratic' |
Этот рисунок сравнивает функции потерь (кроме 'mincost'
) для одного наблюдения по m. Некоторые функции нормированы, чтобы пройти [0,1].
posterior probability является вероятностью, что наблюдение принадлежит конкретного класса, учитывая данные.
Для наивного Бейеса апостериорная вероятность, что классификацией является k для заданного наблюдения (x 1..., xP)
где:
условная объединенная плотность предикторов, учитывая, они находятся в классе k. Mdl.DistributionNames
хранит имена распределения предикторов.
π (Y = k) является распределением априорной вероятности класса. Mdl.Prior
хранит предшествующее распределение.
объединенная плотность предикторов. Классы дискретны, таким образом,
prior probability класса является принятой относительной частотой, с которой наблюдения от того класса происходят в населении.
ClassificationNaiveBayes
| CompactClassificationNaiveBayes
| fitcnb
| loss
| predict
| resubPredict
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.