Обучите классификатор дерева классификации, и затем пересекитесь, подтверждают, он с помощью пользовательского k - сворачивает функцию потерь.
Загрузите ирисовый набор данных Фишера.
Обучите классификатор дерева классификации.
Mdl ClassificationTree модель.
Крест подтверждает Mdl использование 10-кратной перекрестной проверки по умолчанию. Вычислите ошибку классификации (пропорция неправильно классифицированных наблюдений) для наблюдений из сгиба.
Исследуйте результат когда стоимость неправильной классификации цветка как 'versicolor' 10, и любой другой ошибкой является 1. Запишите функцию под названием noversicolor.m это приписывает стоимость 1 для misclassification, но 10 для неправильной классификации цветка как versicolor, и сохраните его на своем пути MATLAB®.
Вычислите среднее значение misclassification ошибка с noversicolor стоимость.