Подходящее дерево выбора из двух альтернатив для регрессии
возвращает дерево регрессии на основе входных переменных (также известный как предикторы, функции или атрибуты) в таблице tree
= fitrtree(Tbl
,ResponseVarName
)Tbl
и выход (ответ) содержится в Tbl.ResponseVarName
. Возвращенный tree
двоичное дерево, где каждый переходящий узел разделен на основе значений столбца Tbl
.
задает опции с помощью одного или нескольких аргументов пары "имя-значение" в дополнение к любой из комбинаций входных аргументов в предыдущих синтаксисах. Например, можно задать веса наблюдения или обучить перекрестную подтвержденную модель.tree
= fitrtree(___,Name,Value
)
Загрузите выборочные данные.
load carsmall
Создайте дерево регрессии использование выборочных данных. Переменная отклика является милями на галлон, MPG.
tree = fitrtree([Weight, Cylinders],MPG,... 'CategoricalPredictors',2,'MinParentSize',20,... 'PredictorNames',{'W','C'})
tree = RegressionTree PredictorNames: {'W' 'C'} ResponseName: 'Y' CategoricalPredictors: 2 ResponseTransform: 'none' NumObservations: 94 Properties, Methods
Предскажите пробег автомобилей за 4 000 фунтов с 4, 6, и 8 цилиндров.
MPG4Kpred = predict(tree,[4000 4; 4000 6; 4000 8])
MPG4Kpred = 3×1
19.2778
19.2778
14.3889
fitrtree
выращивает глубокие деревья решений по умолчанию. Можно вырастить более мелкие деревья, чтобы уменьшать сложность модели или время вычисления. Чтобы управлять глубиной деревьев, используйте 'MaxNumSplits'
, 'MinLeafSize'
, или 'MinParentSize'
аргументы в виде пар имя-значение.
Загрузите carsmall
набор данных. Рассмотрите Displacement
, Horsepower
, и Weight
как предикторы ответа MPG
.
load carsmall
X = [Displacement Horsepower Weight];
Значения по умолчанию контроллеров древовидной глубины для роста деревьев регрессии:
n - 1
для MaxNumSplits
N
размер обучающей выборки.
1 для
MinLeafSize
.
10 для
MinParentSize
.
Эти значения по умолчанию имеют тенденцию выращивать глубокие деревья для больших размеров обучающей выборки.
Обучите дерево регрессии использование значений по умолчанию для управления древовидной глубины. Перекрестный подтвердите модель с помощью 10-кратной перекрестной проверки.
rng(1); % For reproducibility MdlDefault = fitrtree(X,MPG,'CrossVal','on');
Чертите гистограмму количества наложенных разделений на деревьях. Количество наложенных разделений является тем меньше, чем количество листов. Кроме того, просмотрите одно из деревьев.
numBranches = @(x)sum(x.IsBranch); mdlDefaultNumSplits = cellfun(numBranches, MdlDefault.Trained); figure; histogram(mdlDefaultNumSplits)
view(MdlDefault.Trained{1},'Mode','graph')
Среднее количество разделений между 14 и 15.
Предположим, что вы хотите дерево регрессии, которое не является столь комплексное (глубокий), как те обучили использование количества по умолчанию разделений. Обучите другое дерево регрессии, но определите максимальный номер разделений в 7, который является приблизительно половиной среднего количества разделений от дерева регрессии по умолчанию. Перекрестный подтвердите модель с помощью 10-кратной перекрестной проверки.
Mdl7 = fitrtree(X,MPG,'MaxNumSplits',7,'CrossVal','on'); view(Mdl7.Trained{1},'Mode','graph')
Сравните среднеквадратические ошибки перекрестной проверки (MSEs) моделей.
mseDefault = kfoldLoss(MdlDefault)
mseDefault = 25.7383
mse7 = kfoldLoss(Mdl7)
mse7 = 26.5748
Mdl7
является намного менее комплексным и выполняет незначительно хуже, чем MdlDefault
.
Оптимизируйте гиперпараметры автоматически с помощью fitrtree
.
Загрузите carsmall
набор данных.
load carsmall
Используйте Weight
и Horsepower
как предикторы для MPG
. Найдите гиперпараметры, которые минимизируют пятикратную потерю перекрестной проверки при помощи автоматической гипероптимизации параметров управления.
Для воспроизводимости установите случайный seed и используйте 'expected-improvement-plus'
функция приобретения.
X = [Weight,Horsepower]; Y = MPG; rng default Mdl = fitrtree(X,Y,'OptimizeHyperparameters','auto',... 'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName',... 'expected-improvement-plus'))
|======================================================================================| | Iter | Eval | Objective: | Objective | BestSoFar | BestSoFar | MinLeafSize | | | result | log(1+loss) | runtime | (observed) | (estim.) | | |======================================================================================| | 1 | Best | 3.2818 | 0.27526 | 3.2818 | 3.2818 | 28 |
| 2 | Accept | 3.4183 | 0.062389 | 3.2818 | 3.2888 | 1 |
| 3 | Best | 3.1457 | 0.060042 | 3.1457 | 3.1628 | 4 |
| 4 | Best | 2.9885 | 0.062236 | 2.9885 | 2.9885 | 9 |
| 5 | Accept | 2.9978 | 0.075235 | 2.9885 | 2.9885 | 7 |
| 6 | Accept | 3.0203 | 0.051394 | 2.9885 | 3.0013 | 8 |
| 7 | Accept | 2.9885 | 0.048978 | 2.9885 | 2.9981 | 9 |
| 8 | Best | 2.9589 | 0.066794 | 2.9589 | 2.9589 | 10 |
| 9 | Accept | 3.078 | 0.059606 | 2.9589 | 2.9888 | 13 |
| 10 | Accept | 4.1881 | 0.081719 | 2.9589 | 2.9592 | 50 |
| 11 | Accept | 3.4182 | 0.071029 | 2.9589 | 2.9592 | 2 |
| 12 | Accept | 3.0376 | 0.056935 | 2.9589 | 2.9591 | 6 |
| 13 | Accept | 3.1453 | 0.073968 | 2.9589 | 2.9591 | 20 |
| 14 | Accept | 2.9589 | 0.055157 | 2.9589 | 2.959 | 10 |
| 15 | Accept | 3.0123 | 0.06305 | 2.9589 | 2.9728 | 11 |
| 16 | Accept | 2.9589 | 0.06926 | 2.9589 | 2.9593 | 10 |
| 17 | Accept | 3.3055 | 0.061287 | 2.9589 | 2.9593 | 3 |
| 18 | Accept | 2.9589 | 0.065726 | 2.9589 | 2.9592 | 10 |
| 19 | Accept | 3.4577 | 0.047437 | 2.9589 | 2.9591 | 37 |
| 20 | Accept | 3.2166 | 0.061022 | 2.9589 | 2.959 | 16 |
|======================================================================================| | Iter | Eval | Objective: | Objective | BestSoFar | BestSoFar | MinLeafSize | | | result | log(1+loss) | runtime | (observed) | (estim.) | | |======================================================================================| | 21 | Accept | 3.107 | 0.053449 | 2.9589 | 2.9591 | 5 |
| 22 | Accept | 3.2818 | 0.076989 | 2.9589 | 2.959 | 24 |
| 23 | Accept | 3.3226 | 0.057659 | 2.9589 | 2.959 | 32 |
| 24 | Accept | 4.1881 | 0.063933 | 2.9589 | 2.9589 | 43 |
| 25 | Accept | 3.1789 | 0.059665 | 2.9589 | 2.9589 | 18 |
| 26 | Accept | 3.0992 | 0.057077 | 2.9589 | 2.9589 | 14 |
| 27 | Accept | 3.0556 | 0.059156 | 2.9589 | 2.9589 | 22 |
| 28 | Accept | 3.0459 | 0.059843 | 2.9589 | 2.9589 | 12 |
| 29 | Accept | 3.2818 | 0.078887 | 2.9589 | 2.9589 | 26 |
| 30 | Accept | 3.4361 | 0.048159 | 2.9589 | 2.9589 | 34 |
__________________________________________________________ Optimization completed. MaxObjectiveEvaluations of 30 reached. Total function evaluations: 30 Total elapsed time: 35.6165 seconds Total objective function evaluation time: 2.0833 Best observed feasible point: MinLeafSize ___________ 10 Observed objective function value = 2.9589 Estimated objective function value = 2.9589 Function evaluation time = 0.066794 Best estimated feasible point (according to models): MinLeafSize ___________ 10 Estimated objective function value = 2.9589 Estimated function evaluation time = 0.064879
Mdl = RegressionTree ResponseName: 'Y' CategoricalPredictors: [] ResponseTransform: 'none' NumObservations: 94 HyperparameterOptimizationResults: [1x1 BayesianOptimization] Properties, Methods
Загрузите carsmall
набор данных. Рассмотрите модель, которая предсказывает среднюю экономию топлива автомобиля, учитывая его ускорение, количество цилиндров, объема двигателя, лошадиной силы, производителя, модельный год и вес. Рассмотрите Cylinders
, Mfg
, и Model_Year
как категориальные переменные.
load carsmall Cylinders = categorical(Cylinders); Mfg = categorical(cellstr(Mfg)); Model_Year = categorical(Model_Year); X = table(Acceleration,Cylinders,Displacement,Horsepower,Mfg,... Model_Year,Weight,MPG);
Отобразите количество категорий, представленных в категориальных переменных.
numCylinders = numel(categories(Cylinders))
numCylinders = 3
numMfg = numel(categories(Mfg))
numMfg = 28
numModelYear = numel(categories(Model_Year))
numModelYear = 3
Поскольку существует 3 категории только в Cylinders
и Model_Year
, стандартный CART, разделяющий предиктор алгоритм предпочитает разделять непрерывный предиктор по этим двум переменным.
Обучите дерево регрессии использование целого набора данных. Чтобы вырастить несмещенные деревья, задайте использование теста искривления для разделения предикторов. Поскольку существуют отсутствующие значения в данных, задают использование суррогатных разделений.
Mdl = fitrtree(X,'MPG','PredictorSelection','curvature','Surrogate','on');
Оцените значения важности предиктора путем подведения итогов изменений в риске из-за разделений на каждом предикторе и деления суммы на количество узлов ветви. Сравните оценки с помощью столбчатого графика.
imp = predictorImportance(Mdl); figure; bar(imp); title('Predictor Importance Estimates'); ylabel('Estimates'); xlabel('Predictors'); h = gca; h.XTickLabel = Mdl.PredictorNames; h.XTickLabelRotation = 45; h.TickLabelInterpreter = 'none';
В этом случае, Displacement
самый важный предиктор, сопровождаемый Horsepower
.
fitrtree
выращивает глубокие деревья решений по умолчанию. Создайте более мелкое дерево, которое требует, чтобы меньше прошли через длинный массив. Используйте 'MaxDepth'
аргумент пары "имя-значение", чтобы управлять максимальной древовидной глубиной.
Когда вы выполняете вычисления на длинных массивах, MATLAB® использует любого параллельный пул (значение по умолчанию, если у вас есть Parallel Computing Toolbox™), или локальный сеанс работы с MATLAB. Если вы хотите запустить пример с помощью локального сеанса работы с MATLAB, когда у вас есть Parallel Computing Toolbox, можно изменить глобальную среду выполнения при помощи mapreducer
функция.
Загрузите carsmall
набор данных. Рассмотрите Displacement
, Horsepower
, и Weight
как предикторы ответа MPG
.
load carsmall
X = [Displacement Horsepower Weight];
Преобразуйте массивы в оперативной памяти X
и MPG
к длинным массивам.
tx = tall(X);
Starting parallel pool (parpool) using the 'local' profile ... Connected to the parallel pool (number of workers: 6).
ty = tall(MPG);
Вырастите дерево регрессии, использующее все наблюдения. Позвольте дереву расти до максимальной возможной глубины.
Для воспроизводимости установите seed генераторов случайных чисел с помощью rng
и tallrng
. Результаты могут варьироваться в зависимости от количества рабочих и среды выполнения для длинных массивов. Для получения дополнительной информации смотрите Управление Где Ваши Запуски Кода.
rng('default') tallrng('default') Mdl = fitrtree(tx,ty);
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 2: Completed in 3.3 sec - Pass 2 of 2: Completed in 1 sec Evaluation completed in 6.8 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 6: Completed in 1.4 sec - Pass 2 of 6: Completed in 0.41 sec - Pass 3 of 6: Completed in 2.3 sec - Pass 4 of 6: Completed in 3.6 sec - Pass 5 of 6: Completed in 1.5 sec - Pass 6 of 6: Completed in 2.9 sec Evaluation completed in 14 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 7: Completed in 0.45 sec - Pass 2 of 7: Completed in 0.36 sec - Pass 3 of 7: Completed in 1.2 sec - Pass 4 of 7: Completed in 2.5 sec - Pass 5 of 7: Completed in 0.85 sec - Pass 6 of 7: Completed in 1.4 sec - Pass 7 of 7: Completed in 2.2 sec Evaluation completed in 10 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 7: Completed in 0.45 sec - Pass 2 of 7: Completed in 0.36 sec - Pass 3 of 7: Completed in 1.1 sec - Pass 4 of 7: Completed in 2.6 sec - Pass 5 of 7: Completed in 1 sec - Pass 6 of 7: Completed in 1.5 sec - Pass 7 of 7: Completed in 3.2 sec Evaluation completed in 12 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 7: Completed in 0.43 sec - Pass 2 of 7: Completed in 0.38 sec - Pass 3 of 7: Completed in 1.6 sec - Pass 4 of 7: Completed in 2.6 sec - Pass 5 of 7: Completed in 0.89 sec - Pass 6 of 7: Completed in 1.2 sec - Pass 7 of 7: Completed in 2.3 sec Evaluation completed in 11 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 7: Completed in 0.47 sec - Pass 2 of 7: Completed in 0.38 sec - Pass 3 of 7: Completed in 1.1 sec - Pass 4 of 7: Completed in 2 sec - Pass 5 of 7: Completed in 0.76 sec - Pass 6 of 7: Completed in 1.2 sec - Pass 7 of 7: Completed in 2.4 sec Evaluation completed in 9.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 7: Completed in 0.42 sec - Pass 2 of 7: Completed in 0.33 sec - Pass 3 of 7: Completed in 1.2 sec - Pass 4 of 7: Completed in 2.2 sec - Pass 5 of 7: Completed in 0.82 sec - Pass 6 of 7: Completed in 1.3 sec - Pass 7 of 7: Completed in 2.2 sec Evaluation completed in 9.7 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 7: Completed in 0.49 sec - Pass 2 of 7: Completed in 0.36 sec - Pass 3 of 7: Completed in 1.1 sec - Pass 4 of 7: Completed in 2.8 sec - Pass 5 of 7: Completed in 1.2 sec - Pass 6 of 7: Completed in 1.1 sec - Pass 7 of 7: Completed in 2.3 sec Evaluation completed in 10 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 7: Completed in 0.5 sec - Pass 2 of 7: Completed in 0.34 sec - Pass 3 of 7: Completed in 1.1 sec - Pass 4 of 7: Completed in 1.8 sec - Pass 5 of 7: Completed in 0.75 sec - Pass 6 of 7: Completed in 1.1 sec - Pass 7 of 7: Completed in 1.8 sec Evaluation completed in 8.5 sec
Просмотрите обученный древовидный Mdl
.
view(Mdl,'Mode','graph')
Mdl
дерево глубины 8
.
Оцените среднеквадратическую ошибку в выборке.
MSE_Mdl = gather(loss(Mdl,tx,ty))
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 3.1 sec Evaluation completed in 3.7 sec
MSE_Mdl = 4.9078
Вырастите дерево регрессии, использующее все наблюдения. Ограничьте древовидную глубину путем определения максимальной древовидной глубины 4
.
Mdl2 = fitrtree(tx,ty,'MaxDepth',4);
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 2: Completed in 0.38 sec - Pass 2 of 2: Completed in 0.35 sec Evaluation completed in 1.2 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 7: Completed in 0.42 sec - Pass 2 of 7: Completed in 0.35 sec - Pass 3 of 7: Completed in 1.2 sec - Pass 4 of 7: Completed in 1.9 sec - Pass 5 of 7: Completed in 0.73 sec - Pass 6 of 7: Completed in 1.2 sec - Pass 7 of 7: Completed in 2.1 sec Evaluation completed in 8.9 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 7: Completed in 0.44 sec - Pass 2 of 7: Completed in 0.39 sec - Pass 3 of 7: Completed in 1.1 sec - Pass 4 of 7: Completed in 2.1 sec - Pass 5 of 7: Completed in 0.74 sec - Pass 6 of 7: Completed in 1.1 sec - Pass 7 of 7: Completed in 2.7 sec Evaluation completed in 9.7 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 7: Completed in 0.46 sec - Pass 2 of 7: Completed in 0.37 sec - Pass 3 of 7: Completed in 1.1 sec - Pass 4 of 7: Completed in 1.9 sec - Pass 5 of 7: Completed in 0.79 sec - Pass 6 of 7: Completed in 1.1 sec - Pass 7 of 7: Completed in 2.3 sec Evaluation completed in 9.1 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 7: Completed in 0.43 sec - Pass 2 of 7: Completed in 0.41 sec - Pass 3 of 7: Completed in 1.1 sec - Pass 4 of 7: Completed in 1.9 sec - Pass 5 of 7: Completed in 0.72 sec - Pass 6 of 7: Completed in 1 sec - Pass 7 of 7: Completed in 2.2 sec Evaluation completed in 8.9 sec
Просмотрите обученный древовидный Mdl2
.
view(Mdl2,'Mode','graph')
Оцените среднеквадратическую ошибку в выборке.
MSE_Mdl2 = gather(loss(Mdl2,tx,ty))
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.86 sec Evaluation completed in 1.3 sec
MSE_Mdl2 = 9.3903
Mdl2
менее комплексное дерево с глубиной 4 и среднеквадратическая ошибка в выборке, которая выше, чем среднеквадратическая ошибка Mdl
.
Оптимизируйте гиперпараметры дерева регрессии автоматически с помощью длинного массива. Набором выборочных данных является carsmall
набор данных. Этот пример преобразует набор данных в длинный массив и использует его, чтобы запустить процедуру оптимизации.
Когда вы выполняете вычисления на длинных массивах, MATLAB® использует любого параллельный пул (значение по умолчанию, если у вас есть Parallel Computing Toolbox™), или локальный сеанс работы с MATLAB. Если вы хотите запустить пример с помощью локального сеанса работы с MATLAB, когда у вас есть Parallel Computing Toolbox, можно изменить глобальную среду выполнения при помощи mapreducer
функция.
Загрузите carsmall
набор данных. Рассмотрите Displacement
, Horsepower
, и Weight
как предикторы ответа MPG
.
load carsmall
X = [Displacement Horsepower Weight];
Преобразуйте массивы в оперативной памяти X
и MPG
к длинным массивам.
tx = tall(X);
Starting parallel pool (parpool) using the 'local' profile ... Connected to the parallel pool (number of workers: 6).
ty = tall(MPG);
Оптимизируйте гиперпараметры автоматически с помощью 'OptimizeHyperparameters'
аргумент пары "имя-значение". Найдите оптимальный 'MinLeafSize'
значение, которое минимизирует потерю перекрестной проверки затяжки. (Определение 'auto'
использование 'MinLeafSize'
.) Для воспроизводимости используют 'expected-improvement-plus'
функция приобретения и набор seed генераторов случайных чисел с помощью rng
и tallrng
. Результаты могут варьироваться в зависимости от количества рабочих и среды выполнения для длинных массивов. Для получения дополнительной информации смотрите Управление Где Ваши Запуски Кода.
rng('default') tallrng('default') [Mdl,FitInfo,HyperparameterOptimizationResults] = fitrtree(tx,ty,... 'OptimizeHyperparameters','auto',... 'HyperparameterOptimizationOptions',struct('Holdout',0.3,... 'AcquisitionFunctionName','expected-improvement-plus'))
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 4.4 sec Evaluation completed in 6.2 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.97 sec - Pass 2 of 4: Completed in 1.6 sec - Pass 3 of 4: Completed in 3.6 sec - Pass 4 of 4: Completed in 2.4 sec Evaluation completed in 9.8 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.55 sec - Pass 2 of 4: Completed in 1.3 sec - Pass 3 of 4: Completed in 2.7 sec - Pass 4 of 4: Completed in 1.9 sec Evaluation completed in 7.3 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.52 sec - Pass 2 of 4: Completed in 1.3 sec - Pass 3 of 4: Completed in 3 sec - Pass 4 of 4: Completed in 2 sec Evaluation completed in 8.1 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.55 sec - Pass 2 of 4: Completed in 1.4 sec - Pass 3 of 4: Completed in 2.6 sec - Pass 4 of 4: Completed in 2 sec Evaluation completed in 7.3 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.61 sec - Pass 2 of 4: Completed in 1.2 sec - Pass 3 of 4: Completed in 2.1 sec - Pass 4 of 4: Completed in 1.7 sec Evaluation completed in 6.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.53 sec - Pass 2 of 4: Completed in 1.2 sec - Pass 3 of 4: Completed in 2.4 sec - Pass 4 of 4: Completed in 1.6 sec Evaluation completed in 6.6 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 1.4 sec Evaluation completed in 1.7 sec |======================================================================================| | Iter | Eval | Objective: | Objective | BestSoFar | BestSoFar | MinLeafSize | | | result | log(1+loss) | runtime | (observed) | (estim.) | | |======================================================================================| | 1 | Best | 3.2007 | 69.013 | 3.2007 | 3.2007 | 2 |
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.52 sec Evaluation completed in 0.83 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.65 sec - Pass 2 of 4: Completed in 1.2 sec - Pass 3 of 4: Completed in 3 sec - Pass 4 of 4: Completed in 2 sec Evaluation completed in 8.3 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.79 sec Evaluation completed in 1 sec | 2 | Error | NaN | 13.772 | NaN | 3.2007 | 46 |
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.52 sec Evaluation completed in 0.81 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.57 sec - Pass 2 of 4: Completed in 1.3 sec - Pass 3 of 4: Completed in 2.2 sec - Pass 4 of 4: Completed in 1.7 sec Evaluation completed in 6.6 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.5 sec - Pass 2 of 4: Completed in 1.2 sec - Pass 3 of 4: Completed in 2.7 sec - Pass 4 of 4: Completed in 1.7 sec Evaluation completed in 6.9 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.47 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 2.1 sec - Pass 4 of 4: Completed in 1.9 sec Evaluation completed in 6.4 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.72 sec Evaluation completed in 0.99 sec | 3 | Best | 3.1876 | 29.091 | 3.1876 | 3.1884 | 18 |
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.48 sec Evaluation completed in 0.76 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.5 sec - Pass 2 of 4: Completed in 1.2 sec - Pass 3 of 4: Completed in 1.9 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.8 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.48 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 2 sec - Pass 4 of 4: Completed in 1.5 sec Evaluation completed in 5.8 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.54 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.9 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.7 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.46 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.64 sec Evaluation completed in 0.92 sec | 4 | Best | 2.9048 | 33.465 | 2.9048 | 2.9537 | 6 |
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.44 sec Evaluation completed in 0.71 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.46 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 2 sec - Pass 4 of 4: Completed in 1.5 sec Evaluation completed in 5.9 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.47 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.9 sec - Pass 4 of 4: Completed in 1.5 sec Evaluation completed in 5.7 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.44 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.9 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.6 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.66 sec Evaluation completed in 0.92 sec | 5 | Accept | 3.2895 | 25.902 | 2.9048 | 2.9048 | 15 |
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.54 sec Evaluation completed in 0.82 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.53 sec - Pass 2 of 4: Completed in 1.2 sec - Pass 3 of 4: Completed in 2 sec - Pass 4 of 4: Completed in 1.5 sec Evaluation completed in 6 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.5 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 2.1 sec - Pass 4 of 4: Completed in 1.9 sec Evaluation completed in 6.4 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.49 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.9 sec - Pass 4 of 4: Completed in 2 sec Evaluation completed in 6.6 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.45 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 2 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.8 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.68 sec Evaluation completed in 0.99 sec | 6 | Accept | 3.1641 | 35.522 | 2.9048 | 3.1493 | 5 |
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.51 sec Evaluation completed in 0.79 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.67 sec - Pass 2 of 4: Completed in 1.3 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 6.2 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.45 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.9 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.7 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.48 sec - Pass 2 of 4: Completed in 1.4 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.8 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.46 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.6 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.63 sec Evaluation completed in 0.89 sec | 7 | Accept | 2.9048 | 33.755 | 2.9048 | 2.9048 | 6 |
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.45 sec Evaluation completed in 0.75 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.51 sec - Pass 2 of 4: Completed in 1.2 sec - Pass 3 of 4: Completed in 2.2 sec - Pass 4 of 4: Completed in 1.5 sec Evaluation completed in 6.1 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.49 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.9 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.6 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.46 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.6 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.45 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.3 sec Evaluation completed in 5.4 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.68 sec Evaluation completed in 0.97 sec | 8 | Accept | 2.9522 | 33.362 | 2.9048 | 2.9048 | 7 |
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.42 sec Evaluation completed in 0.71 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.48 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.45 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.5 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.9 sec - Pass 4 of 4: Completed in 1.5 sec Evaluation completed in 5.7 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.49 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.64 sec Evaluation completed in 0.9 sec | 9 | Accept | 2.9985 | 32.674 | 2.9048 | 2.9048 | 8 |
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.43 sec Evaluation completed in 0.7 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.47 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.56 sec - Pass 2 of 4: Completed in 1.2 sec - Pass 3 of 4: Completed in 2 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 6 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.45 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.5 sec Evaluation completed in 5.7 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.47 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.6 sec Evaluation completed in 5.8 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.88 sec Evaluation completed in 1.2 sec | 10 | Accept | 3.0185 | 33.922 | 2.9048 | 2.9048 | 10 |
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.44 sec Evaluation completed in 0.74 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.46 sec - Pass 2 of 4: Completed in 1.2 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.3 sec Evaluation completed in 5.6 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.48 sec - Pass 2 of 4: Completed in 1.2 sec - Pass 3 of 4: Completed in 2 sec - Pass 4 of 4: Completed in 1.6 sec Evaluation completed in 6.2 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.73 sec - Pass 2 of 4: Completed in 1.2 sec - Pass 3 of 4: Completed in 2 sec - Pass 4 of 4: Completed in 1.5 sec Evaluation completed in 6.2 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.63 sec Evaluation completed in 0.88 sec | 11 | Accept | 3.2895 | 26.625 | 2.9048 | 2.9048 | 14 |
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.48 sec Evaluation completed in 0.78 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.51 sec - Pass 2 of 4: Completed in 1.2 sec - Pass 3 of 4: Completed in 1.9 sec - Pass 4 of 4: Completed in 1.3 sec Evaluation completed in 5.7 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.48 sec - Pass 2 of 4: Completed in 1.2 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.65 sec Evaluation completed in 0.9 sec | 12 | Accept | 3.4798 | 18.111 | 2.9048 | 2.9049 | 31 |
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.44 sec Evaluation completed in 0.71 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.45 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.3 sec Evaluation completed in 5.4 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.5 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.3 sec Evaluation completed in 5.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.5 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.48 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.7 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.44 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.3 sec Evaluation completed in 5.4 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.43 sec - Pass 2 of 4: Completed in 1.2 sec - Pass 3 of 4: Completed in 2 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.7 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.64 sec Evaluation completed in 0.91 sec | 13 | Accept | 3.2248 | 47.436 | 2.9048 | 2.9048 | 1 |
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.46 sec Evaluation completed in 0.74 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.6 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.3 sec Evaluation completed in 5.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.45 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.6 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.57 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 2.6 sec - Pass 4 of 4: Completed in 1.6 sec Evaluation completed in 6.6 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.62 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.7 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.5 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.6 sec Evaluation completed in 6.1 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.61 sec Evaluation completed in 0.88 sec | 14 | Accept | 3.1498 | 42.062 | 2.9048 | 2.9048 | 3 |
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.46 sec Evaluation completed in 0.76 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.48 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.5 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.3 sec Evaluation completed in 5.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.67 sec - Pass 2 of 4: Completed in 1.3 sec - Pass 3 of 4: Completed in 2.3 sec - Pass 4 of 4: Completed in 2.2 sec Evaluation completed in 7.4 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.45 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.4 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.6 sec Evaluation completed in 0.86 sec | 15 | Accept | 2.9048 | 34.3 | 2.9048 | 2.9048 | 6 |
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.48 sec Evaluation completed in 0.78 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.44 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.3 sec Evaluation completed in 5.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.44 sec - Pass 2 of 4: Completed in 1.2 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.6 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.43 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.3 sec Evaluation completed in 5.4 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.44 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 2 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.7 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.62 sec Evaluation completed in 0.88 sec | 16 | Accept | 2.9048 | 32.97 | 2.9048 | 2.9048 | 6 |
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.43 sec Evaluation completed in 0.73 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.47 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.3 sec Evaluation completed in 5.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.43 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.3 sec Evaluation completed in 5.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.62 sec Evaluation completed in 0.9 sec | 17 | Accept | 3.1847 | 17.47 | 2.9048 | 2.9048 | 23 |
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.43 sec Evaluation completed in 0.72 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.44 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.7 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.68 sec - Pass 2 of 4: Completed in 1.4 sec - Pass 3 of 4: Completed in 1.9 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 6.3 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.45 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.4 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.44 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.4 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.62 sec Evaluation completed in 0.93 sec | 18 | Accept | 3.1817 | 33.346 | 2.9048 | 2.9048 | 4 |
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.43 sec Evaluation completed in 0.72 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.44 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.3 sec Evaluation completed in 5.4 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.62 sec Evaluation completed in 0.86 sec | 19 | Error | NaN | 10.235 | 2.9048 | 2.9048 | 38 |
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.47 sec Evaluation completed in 0.76 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.44 sec - Pass 2 of 4: Completed in 1.2 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.3 sec Evaluation completed in 5.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.44 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.44 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.9 sec - Pass 4 of 4: Completed in 1.3 sec Evaluation completed in 5.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.43 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.63 sec Evaluation completed in 0.89 sec | 20 | Accept | 3.0628 | 32.459 | 2.9048 | 2.9048 | 12 |
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.46 sec Evaluation completed in 0.76 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.48 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.68 sec - Pass 2 of 4: Completed in 1.7 sec - Pass 3 of 4: Completed in 2.1 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 6.8 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.64 sec Evaluation completed in 0.9 sec |======================================================================================| | Iter | Eval | Objective: | Objective | BestSoFar | BestSoFar | MinLeafSize | | | result | log(1+loss) | runtime | (observed) | (estim.) | | |======================================================================================| | 21 | Accept | 3.1847 | 19.02 | 2.9048 | 2.9048 | 27 |
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.45 sec Evaluation completed in 0.75 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.47 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.6 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.45 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.3 sec Evaluation completed in 5.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.5 sec - Pass 2 of 4: Completed in 1.6 sec - Pass 3 of 4: Completed in 2.4 sec - Pass 4 of 4: Completed in 1.5 sec Evaluation completed in 6.8 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.44 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.5 sec Evaluation completed in 5.6 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.63 sec Evaluation completed in 0.89 sec | 22 | Accept | 3.0185 | 33.933 | 2.9048 | 2.9048 | 9 |
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.46 sec Evaluation completed in 0.76 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.45 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.45 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.43 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.3 sec Evaluation completed in 5.4 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.64 sec Evaluation completed in 0.89 sec | 23 | Accept | 3.0749 | 25.147 | 2.9048 | 2.9048 | 20 |
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.44 sec Evaluation completed in 0.73 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.42 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.43 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.3 sec Evaluation completed in 5.4 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.53 sec - Pass 2 of 4: Completed in 1.4 sec - Pass 3 of 4: Completed in 1.9 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.9 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.44 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.62 sec Evaluation completed in 0.88 sec | 24 | Accept | 3.0628 | 32.764 | 2.9048 | 2.9048 | 11 |
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.44 sec Evaluation completed in 0.73 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.44 sec - Pass 2 of 4: Completed in 1.2 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.61 sec Evaluation completed in 0.87 sec | 25 | Error | NaN | 10.294 | 2.9048 | 2.9048 | 34 |
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.44 sec Evaluation completed in 0.73 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.45 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.3 sec Evaluation completed in 5.4 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.43 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.3 sec Evaluation completed in 5.4 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.62 sec Evaluation completed in 0.87 sec | 26 | Accept | 3.1847 | 17.587 | 2.9048 | 2.9048 | 25 |
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.45 sec Evaluation completed in 0.73 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.45 sec - Pass 2 of 4: Completed in 1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.3 sec Evaluation completed in 5.4 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.44 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.43 sec - Pass 2 of 4: Completed in 1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.3 sec Evaluation completed in 5.3 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.66 sec Evaluation completed in 0.96 sec | 27 | Accept | 3.2895 | 24.867 | 2.9048 | 2.9048 | 16 |
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.44 sec Evaluation completed in 0.74 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.45 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.3 sec Evaluation completed in 5.4 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.43 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.44 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.4 sec Evaluation completed in 5.4 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.6 sec Evaluation completed in 0.88 sec | 28 | Accept | 3.2135 | 24.928 | 2.9048 | 2.9048 | 13 |
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.47 sec Evaluation completed in 0.76 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.45 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.3 sec Evaluation completed in 5.4 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.46 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.3 sec Evaluation completed in 5.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.62 sec Evaluation completed in 0.87 sec | 29 | Accept | 3.1847 | 17.582 | 2.9048 | 2.9048 | 21 |
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.53 sec Evaluation completed in 0.81 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.44 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.3 sec Evaluation completed in 5.4 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 4: Completed in 0.43 sec - Pass 2 of 4: Completed in 1.1 sec - Pass 3 of 4: Completed in 1.8 sec - Pass 4 of 4: Completed in 1.3 sec Evaluation completed in 5.4 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 0.63 sec Evaluation completed in 0.88 sec | 30 | Accept | 3.1827 | 17.597 | 2.9048 | 2.9122 | 29 |
__________________________________________________________ Optimization completed. MaxObjectiveEvaluations of 30 reached. Total function evaluations: 30 Total elapsed time: 882.5668 seconds. Total objective function evaluation time: 859.2122 Best observed feasible point: MinLeafSize ___________ 6 Observed objective function value = 2.9048 Estimated objective function value = 2.9122 Function evaluation time = 33.4655 Best estimated feasible point (according to models): MinLeafSize ___________ 6 Estimated objective function value = 2.9122 Estimated function evaluation time = 33.6594 Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 2: Completed in 0.26 sec - Pass 2 of 2: Completed in 0.26 sec Evaluation completed in 0.84 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 7: Completed in 0.31 sec - Pass 2 of 7: Completed in 0.25 sec - Pass 3 of 7: Completed in 0.75 sec - Pass 4 of 7: Completed in 1.2 sec - Pass 5 of 7: Completed in 0.45 sec - Pass 6 of 7: Completed in 0.69 sec - Pass 7 of 7: Completed in 1.2 sec Evaluation completed in 5.7 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 7: Completed in 0.28 sec - Pass 2 of 7: Completed in 0.24 sec - Pass 3 of 7: Completed in 0.75 sec - Pass 4 of 7: Completed in 1.2 sec - Pass 5 of 7: Completed in 0.46 sec - Pass 6 of 7: Completed in 0.67 sec - Pass 7 of 7: Completed in 1.2 sec Evaluation completed in 5.6 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 7: Completed in 0.32 sec - Pass 2 of 7: Completed in 0.25 sec - Pass 3 of 7: Completed in 0.71 sec - Pass 4 of 7: Completed in 1.2 sec - Pass 5 of 7: Completed in 0.47 sec - Pass 6 of 7: Completed in 0.66 sec - Pass 7 of 7: Completed in 1.2 sec Evaluation completed in 5.6 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 7: Completed in 0.29 sec - Pass 2 of 7: Completed in 0.25 sec - Pass 3 of 7: Completed in 0.73 sec - Pass 4 of 7: Completed in 1.2 sec - Pass 5 of 7: Completed in 0.46 sec - Pass 6 of 7: Completed in 0.68 sec - Pass 7 of 7: Completed in 1.2 sec Evaluation completed in 5.5 sec Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 7: Completed in 0.27 sec - Pass 2 of 7: Completed in 0.25 sec - Pass 3 of 7: Completed in 0.75 sec - Pass 4 of 7: Completed in 1.2 sec - Pass 5 of 7: Completed in 0.47 sec - Pass 6 of 7: Completed in 0.69 sec - Pass 7 of 7: Completed in 1.2 sec Evaluation completed in 5.6 sec
Mdl = CompactRegressionTree ResponseName: 'Y' CategoricalPredictors: [] ResponseTransform: 'none' Properties, Methods
FitInfo = struct with no fields.
HyperparameterOptimizationResults = BayesianOptimization with properties: ObjectiveFcn: @createObjFcn/tallObjFcn VariableDescriptions: [3×1 optimizableVariable] Options: [1×1 struct] MinObjective: 2.9048 XAtMinObjective: [1×1 table] MinEstimatedObjective: 2.9122 XAtMinEstimatedObjective: [1×1 table] NumObjectiveEvaluations: 30 TotalElapsedTime: 882.5668 NextPoint: [1×1 table] XTrace: [30×1 table] ObjectiveTrace: [30×1 double] ConstraintsTrace: [] UserDataTrace: {30×1 cell} ObjectiveEvaluationTimeTrace: [30×1 double] IterationTimeTrace: [30×1 double] ErrorTrace: [30×1 double] FeasibilityTrace: [30×1 logical] FeasibilityProbabilityTrace: [30×1 double] IndexOfMinimumTrace: [30×1 double] ObjectiveMinimumTrace: [30×1 double] EstimatedObjectiveMinimumTrace: [30×1 double]
Tbl
— Выборочные данныеВыборочные данные раньше обучали модель в виде таблицы. Каждая строка Tbl
соответствует одному наблюдению, и каждый столбец соответствует одному переменному предиктору. Опционально, Tbl
может содержать один дополнительный столбец для переменной отклика. Многостолбцовые переменные и массивы ячеек кроме массивов ячеек из символьных векторов не позволены.
Если Tbl
содержит переменную отклика, и вы хотите использовать все остающиеся переменные в Tbl
как предикторы, затем задайте переменную отклика при помощи ResponseVarName
.
Если Tbl
содержит переменную отклика, и вы хотите использовать только подмножество остающихся переменных в Tbl
как предикторы, затем задайте формулу при помощи formula
.
Если Tbl
не содержит переменную отклика, затем задает переменную отклика при помощи Y
. Длина переменной отклика и количество строк в Tbl
должно быть равным.
Типы данных: table
ResponseVarName
— Имя переменной откликаTbl
Имя переменной отклика в виде имени переменной в Tbl
. Переменная отклика должна быть числовым вектором.
Необходимо задать ResponseVarName
как вектор символов или строковый скаляр. Например, если Tbl
хранит переменную отклика Y
как Tbl.Y
, затем задайте его как 'Y'
. В противном случае программное обеспечение обрабатывает все столбцы Tbl
, включая Y
, как предикторы, когда обучение модель.
Типы данных: char |
string
formula
— Объяснительная модель переменной отклика и подмножество переменных предикторовОбъяснительная модель переменной отклика и подмножество переменных предикторов в виде вектора символов или строкового скаляра в форме 'Y~X1+X2+X3'
. В этой форме, Y
представляет переменную отклика и X1
x2
, и X3
представляйте переменные предикторы.
Задавать подмножество переменных в Tbl
как предикторы для обучения модель, используйте формулу. Если вы задаете формулу, то программное обеспечение не использует переменных в Tbl
это не появляется в formula
.
Имена переменных в формуле должны быть оба именами переменных в Tbl
(Tbl.Properties.VariableNames
) и допустимые идентификаторы MATLAB®.
Можно проверить имена переменных в Tbl
при помощи isvarname
функция. Следующий код возвращает логический 1
TRUE
) для каждой переменной, которая имеет допустимое имя переменной.
cellfun(@isvarname,Tbl.Properties.VariableNames)
Tbl
не допустимы, затем преобразуют их при помощи matlab.lang.makeValidName
функция.Tbl.Properties.VariableNames = matlab.lang.makeValidName(Tbl.Properties.VariableNames);
Типы данных: char |
string
Y
— Данные об ответеДанные об ответе в виде числового вектор-столбца с одинаковым числом строк как X
. Каждая запись в Y
ответ на данные в соответствующей строке X
.
Программное обеспечение рассматривает NaN
значения в Y
быть отсутствующими значениями. fitrtree
не использует наблюдения с отсутствующими значениями для Y
в подгонке.
Типы данных: single
| double
X
— Данные о предиктореДанные о предикторе в виде числовой матрицы. Каждый столбец X
представляет одну переменную, и каждая строка представляет одно наблюдение.
fitrtree
рассматривает NaN
значения в X
как отсутствующие значения. fitrtree
не использует наблюдения со всеми отсутствующими значениями для X
в подгонке. fitrtree
наблюдения использования с некоторыми отсутствующими значениями для X
найти разделения на переменных, для которых эти наблюдения имеют допустимые значения.
Типы данных: single
| double
Задайте дополнительные разделенные запятой пары Name,Value
аргументы. Name
имя аргумента и Value
соответствующее значение. Name
должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN
.
'CrossVal','on','MinParentSize',30
задает перекрестное подтвержденное дерево регрессии с минимумом 30 наблюдений на узел ветви.Примечание
Вы не можете использовать аргумент пары "имя-значение" перекрестной проверки наряду с 'OptimizeHyperparameters'
аргумент пары "имя-значение". Можно изменить перекрестную проверку для 'OptimizeHyperparameters'
только при помощи 'HyperparameterOptimizationOptions'
аргумент пары "имя-значение".
'CategoricalPredictors'
— Категориальный список предикторов'all'
Категориальные предикторы перечисляют в виде разделенной запятой пары, состоящей из 'CategoricalPredictors'
и одно из значений в этой таблице.
Значение | Описание |
---|---|
Вектор из положительных целых чисел | Каждая запись в векторе является значением индекса, соответствующим столбцу данных о предикторе (X или Tbl ) это содержит категориальную переменную. |
Логический вектор | true запись означает что соответствующий столбец данных о предикторе (X или Tbl ) категориальная переменная. |
Символьная матрица | Каждая строка матрицы является именем переменного предиктора. Имена должны совпадать с записями в PredictorNames . Заполните имена дополнительными пробелами, таким образом, каждая строка символьной матрицы имеет ту же длину. |
Массив строк или массив ячеек из символьных векторов | Каждым элементом в массиве является имя переменного предиктора. Имена должны совпадать с записями в PredictorNames . |
'all' | Все предикторы являются категориальными. |
По умолчанию, если данные о предикторе находятся в таблице (Tbl
), fitrtree
принимает, что переменная является категориальной, если это - логический вектор, неупорядоченный категориальный вектор, символьный массив, массив строк или массив ячеек из символьных векторов. Если данные о предикторе являются матрицей (X
), fitrtree
принимает, что все предикторы непрерывны. Чтобы идентифицировать любые другие предикторы как категориальные предикторы, задайте их при помощи 'CategoricalPredictors'
аргумент пары "имя-значение".
Пример: 'CategoricalPredictors','all'
Типы данных: single
| double
| logical
| char
| string
| cell
'MaxDepth'
— Максимальная древовидная глубинаМаксимальная древовидная глубина в виде разделенной запятой пары, состоящей из 'MaxDepth'
и положительное целое число. Задайте значение для этого аргумента, чтобы возвратить дерево, которое имеет меньше уровней и требует, чтобы меньше прошли через длинный массив, чтобы вычислить. Обычно алгоритм fitrtree
берет один проход через данные и дополнительную передачу для каждого древовидного уровня. Функция не устанавливает максимальную древовидную глубину по умолчанию.
Примечание
Эта опция применяется только, когда вы используете fitrtree
на длинных массивах. Смотрите Длинные массивы для получения дополнительной информации.
'MergeLeaves'
— Листовой флаг слияния'on'
(значение по умолчанию) | 'off'
Листовое слияние отмечает в виде разделенной запятой пары, состоящей из 'MergeLeaves'
и 'on'
или 'off'
.
Если MergeLeaves
'on'
то fitrtree
:
Листы слияний, которые происходят из того же родительского узла и дают к сумме значений риска, больше, чем или равный риску, сопоставленному с родительским узлом
Оценивает оптимальную последовательность сокращенных поддеревьев, но не сокращает дерево регрессии
В противном случае, fitrtree
не объединяет листы.
Пример: 'MergeLeaves','off'
'MinParentSize'
— Минимальное количество наблюдений узла ветви
(значение по умолчанию) | положительное целочисленное значениеМинимальное количество наблюдений узла ветви в виде разделенной запятой пары, состоящей из 'MinParentSize'
и положительное целочисленное значение. Каждый узел ветви в дереве имеет, по крайней мере, MinParentSize
наблюдения. Если вы предоставляете оба MinParentSize
и MinLeafSize
, fitrtree
использует установку, которая дает большие листы: MinParentSize = max(MinParentSize,2*MinLeafSize)
.
Пример: 'MinParentSize',8
Типы данных: single
| double
'NumBins'
— Количество интервалов для числовых предикторов[]
(пустое) (значение по умолчанию) | положительный целочисленный скалярКоличество интервалов для числовых предикторов в виде разделенной запятой пары, состоящей из 'NumBins'
и положительный целочисленный скаляр.
Если 'NumBins'
значение пусто (значение по умолчанию), затем программное обеспечение не делает интервала никакие предикторы.
Если вы задаете 'NumBins'
значение как положительный целочисленный скаляр, затем интервалы программного обеспечения каждый числовой предиктор в конкретное количество равновероятных интервалов, и затем выращивает деревья на индексах интервала вместо исходных данных.
Если 'NumBins'
значение превышает номер (u) уникальных значений для предиктора, затем fitrtree
интервалы предиктор в интервалы u.
fitrtree
не делает интервала категориальные предикторы.
Когда вы используете большой обучающий набор данных, эта опция раскладывания ускоряет обучение, но вызывает потенциальное уменьшение в точности. Можно попробовать 'NumBins',50
во-первых, и затем измените 'NumBins'
значение в зависимости от точности и учебной скорости.
Обученная модель хранит границы интервала в BinEdges
свойство.
Пример: 'NumBins',50
Типы данных: single
| double
'PredictorNames'
— Имена переменного предиктораПеременный предиктор называет в виде разделенной запятой пары, состоящей из 'PredictorNames'
и массив строк уникальных имен или массив ячеек уникальных векторов символов. Функциональность 'PredictorNames'
зависит от способа, которым вы снабжаете обучающими данными.
Если вы предоставляете X
и Y
, затем можно использовать 'PredictorNames'
присваивать имена к переменным предикторам в X
.
Порядок имен в PredictorNames
должен соответствовать порядку следования столбцов X
. Таким образом, PredictorNames{1}
имя X(:,1)
, PredictorNames{2}
имя X(:,2)
, и так далее. Кроме того, size(X,2)
и numel(PredictorNames)
должно быть равным.
По умолчанию, PredictorNames
{'x1','x2',...}
.
Если вы предоставляете Tbl
, затем можно использовать 'PredictorNames'
выбрать который переменные предикторы использовать в обучении. Таким образом, fitrtree
использование только переменные предикторы в PredictorNames
и переменная отклика во время обучения.
PredictorNames
должно быть подмножество Tbl.Properties.VariableNames
и не может включать имя переменной отклика.
По умолчанию, PredictorNames
содержит имена всех переменных предикторов.
Хорошая практика должна задать предикторы для обучения с помощью любого 'PredictorNames'
или formula
, но не то и другое одновременно.
Пример: 'PredictorNames',{'SepalLength','SepalWidth','PetalLength','PetalWidth'}
Типы данных: string
| cell
'PredictorSelection'
— Алгоритм раньше выбирал лучший предиктор разделения'allsplits'
(значение по умолчанию) | 'curvature'
| 'interaction-curvature'
Алгоритм раньше выбирал лучший предиктор разделения в каждом узле в виде разделенной запятой пары, состоящей из 'PredictorSelection'
и значение в этой таблице.
Значение | Описание |
---|---|
'allsplits' | Стандартный CART — Выбирает предиктор разделения, который максимизирует усиление критерия разделения по всем возможным разделениям всех предикторов [1]. |
'curvature' | Тест искривления — Выбирает предиктор разделения, который минимизирует p - значение тестов хи-квадрата независимости между каждым предиктором и ответом [2]. Учебная скорость похожа на стандартный CART. |
'interaction-curvature' | Тест взаимодействия — Выбирает предиктор разделения, который минимизирует p - значение тестов хи-квадрата независимости между каждым предиктором и ответом (то есть, проводит тесты искривления), и это минимизирует p - значение теста хи-квадрата независимости между каждой парой предикторов и ответом [2]. Учебная скорость может быть медленнее, чем стандартный CART. |
Для 'curvature'
и 'interaction-curvature'
, если все тесты дают к p - значения, больше, чем 0,05, то fitrtree
остановки, разделяющие узлы.
Совет
Стандартный CART имеет тенденцию выбирать предикторы разделения, содержащие много отличных значений, e.g., непрерывные переменные, по тем, которые содержат немного отличных значений, e.g., категориальные переменные [3]. Рассмотрите определение искривления или теста взаимодействия, если какое-либо следующее верно:
Если существуют предикторы, которые имеют относительно меньше отличных значений, чем другие предикторы, например, если набор данных предиктора неоднороден.
Если анализ важности предиктора является вашей целью. Для больше на оценке важности предиктора, смотрите predictorImportance
и введение в выбор признаков.
Деревья, выращенные с помощью стандартного CART, не чувствительны к взаимодействиям переменного предиктора. Кроме того, такие деревья, менее вероятно, идентифицируют важные переменные в присутствии многих несоответствующих предикторов, чем приложение теста взаимодействия. Поэтому с учетом взаимодействий предиктора и идентифицируют переменные важности в присутствии многих несоответствующих переменных, задают тест взаимодействия.
Скорость предсказания незатронута значением 'PredictorSelection'
.
Для получения дополнительной информации, на как fitrtree
выбирает предикторы разделения, см. Правила Расщепления узлов и Выберите Split Predictor Selection Technique.
Пример: 'PredictorSelection','curvature'
'Prune'
— Отметьте, чтобы оценить оптимальную последовательность сокращенных поддеревьев'on'
(значение по умолчанию) | 'off'
Отметьте, чтобы оценить оптимальную последовательность сокращенных поддеревьев в виде разделенной запятой пары, состоящей из 'Prune'
и 'on'
или 'off'
.
Если Prune
'on'
то fitrtree
выращивает дерево регрессии и оценивает оптимальную последовательность сокращенных поддеревьев, но не сокращает дерево регрессии. В противном случае, fitrtree
выращивает дерево регрессии, не оценивая оптимальную последовательность сокращенных поддеревьев.
Чтобы сократить обученное дерево регрессии, передайте дерево регрессии prune
.
Пример: 'Prune','off'
'PruneCriterion'
— Сокращение критерия'mse'
(значение по умолчанию)Сокращение критерия в виде разделенной запятой пары, состоящей из 'PruneCriterion'
и 'mse'
.
'QuadraticErrorTolerance'
— Квадратичный ошибочный допуск1e-6
(значение по умолчанию) | значение положительной скалярной величиныКвадратичный ошибочный допуск на узел в виде разделенной запятой пары, состоящей из 'QuadraticErrorTolerance'
и значение положительной скалярной величины. Функция прекращает разделять узлы, когда квадратичная невязка взвешенного среднего на узел опускается ниже QuadraticErrorTolerance*ε
, где ε
квадратичная невязка взвешенного среднего всех ответов n, вычисленных прежде, чем вырастить дерево решений.
wi является весом наблюдения i, учитывая, что веса всех наблюдений суммируют к одному (), и
взвешенное среднее всех ответов.
Для получения дополнительной информации о расщеплении узлов см. Правила Расщепления узлов.
Пример: 'QuadraticErrorTolerance',1e-4
'Reproducible'
— Отметьте, чтобы осуществить воспроизводимостьfalse
(логический 0
) (значение по умолчанию) | true
(логический 1
)Отметьте, чтобы осуществить воспроизводимость по повторным запускам обучения модель в виде разделенной запятой пары, состоящей из 'Reproducible'
и любой false
или true
.
Если 'NumVariablesToSample'
не 'all'
, затем программное обеспечение выбирает предикторы наугад для каждого разделения. Чтобы воспроизвести случайные выборы, необходимо задать 'Reproducible',true
и набор seed генератора случайных чисел при помощи rng
. Обратите внимание на то, что установка 'Reproducible'
к true
может замедлить обучение.
Пример: 'Reproducible',true
Типы данных: логический
'ResponseName'
— Имя переменной отклика'Y'
(значение по умолчанию) | вектор символов | строковый скалярИмя переменной отклика в виде разделенной запятой пары, состоящей из 'ResponseName'
и вектор символов или строковый скаляр.
Если вы предоставляете Y
, затем можно использовать 'ResponseName'
задавать имя для переменной отклика.
Если вы предоставляете ResponseVarName
или formula
, затем вы не можете использовать 'ResponseName'
.
Пример: 'ResponseName','response'
Типы данных: char |
string
'ResponseTransform'
— Преобразование ответа'none'
(значение по умолчанию) | указатель на функциюПреобразование ответа в виде разделенной запятой пары, состоящей из 'ResponseTransform'
и любой 'none'
или указатель на функцию. Значением по умолчанию является 'none'
, что означает @(y)y
, или никакое преобразование. Для функции MATLAB или функции вы задаете, используете ее указатель на функцию. Указатель на функцию должен принять вектор (исходные значения отклика) и возвратить вектор, одного размера (преобразованные значения отклика).
Пример: Предположим, что вы создаете указатель на функцию, который применяет экспоненциальное преобразование к входному вектору при помощи myfunction = @(y)exp(y)
. Затем можно задать преобразование ответа как 'ResponseTransform',myfunction
.
Типы данных: char |
string
| function_handle
'SplitCriterion'
— Разделите критерий'MSE'
(значение по умолчанию)Разделите критерий в виде разделенной запятой пары, состоящей из 'SplitCriterion'
и 'MSE'
, значение среднеквадратической ошибки.
Пример: 'SplitCriterion','MSE'
'Surrogate'
— Суррогатное решение разделяет флаг'off'
(значение по умолчанию) | 'on'
| 'all'
| положительное целое числоСуррогатное решение разделяет флаг в виде разделенной запятой пары, состоящей из 'Surrogate'
и 'on'
off
все
, или положительное целое число.
Когда 'on'
, fitrtree
находит самое большее 10 суррогатных разделений в каждом узле ветви.
Когда установлено в положительное целое число, fitrtree
находит самое большее конкретное количество суррогатных разделений в каждом узле ветви.
Когда установлено в 'all'
, fitrtree
находит все суррогатные разделения в каждом узле ветви. 'all'
установка может использовать много времени и памяти.
Используйте суррогатные разделения, чтобы улучшить точность предсказаний для данных с отсутствующими значениями. Установка также позволяет вам вычислить меры прогнозирующей ассоциации между предикторами.
Пример: 'Surrogate','on'
Типы данных: single
| double
| char
| string
'Weights'
— Веса наблюденияones(size(X,1),1)
(значение по умолчанию) | вектор из скалярных значений | имя переменной в Tbl
Веса наблюдения в виде разделенной запятой пары, состоящей из 'Weights'
и вектор из скалярных значений или имя переменной в Tbl
. Программное обеспечение взвешивает наблюдения в каждой строке X
или Tbl
с соответствующим значением в Weights
. Размер Weights
должен равняться количеству строк в X
или Tbl
.
Если вы задаете входные данные как таблицу Tbl
, затем Weights
может быть имя переменной в Tbl
это содержит числовой вектор. В этом случае необходимо задать Weights
как вектор символов или строковый скаляр. Например, если вектор весов W
хранится как Tbl.W
, затем задайте его как 'W'
. В противном случае программное обеспечение обрабатывает все столбцы Tbl
, включая W
, как предикторы, когда обучение модель.
fitrtree
нормирует значения Weights
суммировать к 1.
Типы данных: single
| double
| char
| string
'CrossVal'
— Флаг перекрестной проверки'off'
(значение по умолчанию) | 'on'
Флаг перекрестной проверки в виде разделенной запятой пары, состоящей из 'CrossVal'
и любой 'on'
или 'off'
.
Если 'on'
, fitrtree
выращивает перекрестное подтвержденное дерево решений с 10 сгибами. Можно заменить эту установку перекрестной проверки с помощью одного из 'KFold'
, 'Holdout'
, 'Leaveout'
, или 'CVPartition'
аргументы в виде пар имя-значение. Можно только использовать одну из этих четырех опций ('KFold'
, 'Holdout'
, 'Leaveout'
, или 'CVPartition'
) в то время, когда создание перекрестного подтвержденного дерева.
В качестве альтернативы перекрестный подтвердите tree
позже использование crossval
метод.
Пример: 'CrossVal','on'
'CVPartition'
— Раздел для дерева перекрестной проверкиcvpartition
объектРаздел для перекрестного подтвержденного дерева в виде разделенной запятой пары, состоящей из 'CVPartition'
и объект создал использование cvpartition
.
Если вы используете 'CVPartition'
, вы не можете использовать ни один 'KFold'
, 'Holdout'
, или 'Leaveout'
аргументы в виде пар имя-значение.
'Holdout'
— Часть данных для валидации затяжки
(значение по умолчанию) | скалярное значение в области значений [0,1]
Часть данных, используемых для валидации затяжки в виде разделенной запятой пары, состоящей из 'Holdout'
и скалярное значение в области значений [0,1]
. Валидация затяжки тестирует заданную часть данных и использует остальную часть данных для обучения.
Если вы используете 'Holdout'
, вы не можете использовать ни один 'CVPartition'
, 'KFold'
, или 'Leaveout'
аргументы в виде пар имя-значение.
Пример: 'Holdout',0.1
Типы данных: single
| double
'KFold'
— Количество сгибов
(значение по умолчанию) | положительное целое число, больше, чем 1Количество сгибов, чтобы использовать в перекрестном подтвержденном дереве в виде разделенной запятой пары, состоящей из 'KFold'
и положительное целочисленное значение, больше, чем 1.
Если вы используете 'KFold'
, вы не можете использовать ни один 'CVPartition'
, 'Holdout'
, или 'Leaveout'
аргументы в виде пар имя-значение.
Пример: 'KFold',8
Типы данных: single
| double
'Leaveout'
— Флаг перекрестной проверки "Пропускает один"'off'
(значение по умолчанию) | 'on'
Флаг перекрестной проверки "Пропускает один" в виде разделенной запятой пары, состоящей из 'Leaveout'
и любой 'on'
или 'off
. Используйте перекрестную проверку, "пропускают один" путем установки на 'on'
.
Если вы используете 'Leaveout'
, вы не можете использовать ни один 'CVPartition'
, 'Holdout'
, или 'KFold'
аргументы в виде пар имя-значение.
Пример: 'Leaveout','on'
'MaxNumSplits'
— Максимальное количество разделений решенияsize(X,1) - 1
(значение по умолчанию) | положительное целое числоМаксимальное количество разделений решения (или узлы ветви) в виде разделенной запятой пары, состоящей из 'MaxNumSplits'
и положительное целое число. fitrtree
разделения MaxNumSplits
или меньше узлов ветви. Для получения дополнительной информации о разделяющем поведении смотрите Древовидное Управление Глубиной.
Пример: 'MaxNumSplits',5
Типы данных: single
| double
'MinLeafSize'
— Минимальное количество наблюдений вершины
(значение по умолчанию) | положительное целочисленное значениеМинимальное количество наблюдений вершины в виде разделенной запятой пары, состоящей из 'MinLeafSize'
и положительное целочисленное значение. Каждый лист имеет, по крайней мере, MinLeafSize
наблюдения на древовидный лист. Если вы предоставляете оба MinParentSize
и MinLeafSize
, fitrtree
использует установку, которая дает большие листы: MinParentSize = max(MinParentSize,2*MinLeafSize)
.
Пример: 'MinLeafSize',3
Типы данных: single
| double
'NumVariablesToSample'
— Количество предикторов, чтобы выбрать наугад для каждого разделения'all'
(значение по умолчанию) | положительное целочисленное значениеКоличество предикторов, чтобы выбрать наугад для каждого разделения в виде разделенной запятой пары, состоящей из 'NumVariablesToSample'
и положительное целочисленное значение. В качестве альтернативы можно задать 'all'
использовать все доступные предикторы.
Если обучающие данные включают много предикторов, и вы хотите анализировать важность предиктора, затем задать 'NumVariablesToSample'
как 'all'
. В противном случае программное обеспечение не может выбрать некоторые предикторы, недооценив их важность.
Чтобы воспроизвести случайные выборы, необходимо установить seed генератора случайных чисел при помощи rng
и задайте 'Reproducible',true
.
Пример: 'NumVariablesToSample',3
Типы данных: char |
string
| single
| double
'OptimizeHyperparameters'
— Параметры, чтобы оптимизировать'none'
(значение по умолчанию) | 'auto'
| 'all'
| массив строк или массив ячеек имеющих право названий параметра | вектор из optimizableVariable
объектыПараметры, чтобы оптимизировать в виде разделенной запятой пары, состоящей из 'OptimizeHyperparameters'
и одно из следующего:
'none'
— Не оптимизировать.
'auto'
— Используйте {'MinLeafSize'}
.
'all'
— Оптимизируйте все имеющие право параметры.
Массив строк или массив ячеек имеющих право названий параметра.
Вектор из optimizableVariable
объекты, обычно выход hyperparameters
.
Оптимизация пытается минимизировать потерю перекрестной проверки (ошибка) для fitrtree
путем варьирования параметров. Чтобы управлять типом перекрестной проверки и другими аспектами оптимизации, используйте HyperparameterOptimizationOptions
пара "имя-значение".
Примечание
'OptimizeHyperparameters'
значения заменяют любые значения, вы устанавливаете использование других аргументов пары "имя-значение". Например, установка 'OptimizeHyperparameters'
к 'auto'
вызывает 'auto'
значения, чтобы применяться.
Имеющие право параметры для fitrtree
:
MaxNumSplits
— fitrtree
поисковые запросы среди целых чисел, по умолчанию масштабируемых журналом в области значений [1,max(2,NumObservations-1)]
.
MinLeafSize
— fitrtree
поисковые запросы среди целых чисел, по умолчанию масштабируемых журналом в области значений [1,max(2,floor(NumObservations/2))]
.
NumVariablesToSample
— fitrtree
не оптимизирует по этому гиперпараметру. Если вы передаете NumVariablesToSample
как название параметра, fitrtree
просто использует полное количество предикторов. Однако fitrensemble
действительно оптимизирует по этому гиперпараметру.
Установите параметры не по умолчанию путем передачи вектора из optimizableVariable
объекты, которые имеют значения не по умолчанию. Например,
load carsmall params = hyperparameters('fitrtree',[Horsepower,Weight],MPG); params(1).Range = [1,30];
Передайте params
как значение OptimizeHyperparameters
.
По умолчанию итеративное отображение появляется в командной строке, и графики появляются согласно количеству гиперпараметров в оптимизации. Для оптимизации и графиков, целевая функция является журналом (1 + потеря перекрестной проверки) для регрессии и misclassification уровня для классификации. Чтобы управлять итеративным отображением, установите Verbose
поле 'HyperparameterOptimizationOptions'
аргумент пары "имя-значение". Чтобы управлять графиками, установите ShowPlots
поле 'HyperparameterOptimizationOptions'
аргумент пары "имя-значение".
Для примера смотрите, Оптимизируют Дерево Регрессии.
Пример: 'auto'
'HyperparameterOptimizationOptions'
— Опции для оптимизацииОпции для оптимизации в виде разделенной запятой пары, состоящей из 'HyperparameterOptimizationOptions'
и структура. Этот аргумент изменяет эффект OptimizeHyperparameters
аргумент пары "имя-значение". Все поля в структуре являются дополнительными.
Имя поля | Значения | Значение по умолчанию |
---|---|---|
Optimizer |
| 'bayesopt' |
AcquisitionFunctionName |
Приобретение функционирует, чьи имена включают | 'expected-improvement-per-second-plus' |
MaxObjectiveEvaluations | Максимальное количество оценок целевой функции. | 30 для 'bayesopt' или 'randomsearch' , и целая сетка для 'gridsearch' |
MaxTime | Ограничение по времени в виде положительного действительного. Ограничение по времени находится в секундах, как измерено | Inf |
NumGridDivisions | Для 'gridsearch' , количество значений в каждой размерности. Значение может быть вектором из положительных целых чисел, дающих количество значений для каждой размерности или скаляр, который применяется ко всем размерностям. Это поле проигнорировано для категориальных переменных. | 10
|
ShowPlots | Логическое значение, указывающее, показать ли графики. Если true , это поле строит лучшее значение целевой функции против номера итерации. Если существуют один или два параметра оптимизации, и если Optimizer 'bayesopt' , затем ShowPlots также строит модель целевой функции против параметров. | true |
SaveIntermediateResults | Логическое значение, указывающее, сохранить ли результаты когда Optimizer 'bayesopt' . Если true , это поле перезаписывает переменную рабочей области под названием 'BayesoptResults' в каждой итерации. Переменной является BayesianOptimization объект. | false |
Verbose | Отобразитесь к командной строке.
Для получения дополнительной информации смотрите | 1
|
UseParallel | Логическое значение, указывающее, запустить ли Байесовую оптимизацию параллельно, которая требует Parallel Computing Toolbox™. Из-за невоспроизводимости синхронизации параллели, параллельная Байесова оптимизация не обязательно приводит к восстанавливаемым результатам. Для получения дополнительной информации смотрите Параллельную Байесовую Оптимизацию. | false |
Repartition | Логическое значение, указывающее, повторно разделить ли перекрестную проверку в каждой итерации. Если
| false |
Используйте не больше, чем одни из следующих трех имен полей. | ||
CVPartition | cvpartition объект, как создано cvpartition . | 'Kfold',5 если вы не задаете поля перекрестной проверки |
Holdout | Скаляр в области значений (0,1) представление части затяжки. | |
Kfold | Целое число, больше, чем 1. |
Пример: 'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)
Типы данных: struct
tree
— Дерево регрессииДерево регрессии, возвращенное как объект дерева регрессии. Используя 'Crossval'
, 'KFold'
, 'Holdout'
, 'Leaveout'
, или 'CVPartition'
опции приводят к дереву класса RegressionPartitionedModel
. Вы не можете использовать разделенное дерево для предсказания, таким образом, этот вид дерева не имеет predict
метод.
В противном случае, tree
имеет класс RegressionTree
, и можно использовать predict
метод, чтобы сделать предсказания.
curvature test является статистическим тестом, оценивающим нулевую гипотезу, что две переменные являются несвязанными.
Тест искривления между переменным предиктором x и y проводится с помощью этого процесса.
Если x непрерывен, то раздел это в его квартили. Создайте номинальную переменную, что наблюдения интервалов, согласно которому разделу раздела они занимают. Если существуют отсутствующие значения, то создают дополнительный интервал для них.
Для каждого уровня в разделенном предикторе j = 1... J и класс в ответе k = 1..., K, вычисляют взвешенную пропорцию наблюдений в классе k
wi является весом наблюдения i, , I является функцией индикатора, и n является объемом выборки. Если все наблюдения имеют тот же вес, то , где njk является количеством наблюдений на уровне j предиктора, которые находятся в классе k.
Вычислите тестовую статистическую величину
, то есть, безусловная вероятность наблюдения предиктора на уровне j. , это - безусловная вероятность наблюдения класса k. Если n является достаточно большим, то t распределяется как χ 2 с (K – 1) (J – 1) степени свободы.
Если p - значение для теста меньше 0.05, то отклоните нулевую гипотезу, что нет никакой ассоциации между x и y.
При определении лучшего предиктора разделения в каждом узле стандартный алгоритм CART предпочитает выбирать непрерывные предикторы, которые имеют много уровней. Иногда, такой выбор может быть побочным и может также замаскировать более важные предикторы, которые имеют меньше уровней, таких как категориальные предикторы.
Тест искривления может быть применен вместо стандартного CART, чтобы определить лучший предиктор разделения в каждом узле. В этом случае лучший переменный предиктор разделения является тем, который минимизирует значительный p - значения (те меньше чем 0,05) тестов искривления между каждым предиктором и переменной отклика. Такой выбор устойчив к количеству уровней в отдельных предикторах.
Для получения дополнительной информации о том, как тест искривления применяется к растущим деревьям регрессии, см. Правила Расщепления узлов и [3].
interaction test является статистическим тестом, который оценивает нулевую гипотезу, что нет никакого взаимодействия между парой переменных предикторов и переменной отклика.
Тест взаимодействия, оценивающий ассоциацию между переменными предикторами x 1 и x 2 относительно y, проводится с помощью этого процесса.
Если x 1 или x 2 непрерывен, то раздел что переменная в ее квартили. Создайте номинальную переменную, что наблюдения интервалов, согласно которому разделу раздела они занимают. Если существуют отсутствующие значения, то создают дополнительный интервал для них.
Создайте номинальную переменную z с J = J 1J2 уровни, который присваивает индекс наблюдению i, согласно которым уровням x 1 и x 2 это принадлежит. Удалите любые уровни z, которые не соответствуют никаким наблюдениям.
Проведите тест искривления между z и y.
При росте деревьев решений, если в данных существуют важные взаимодействия между парами предикторов, но существует также много других менее важных предикторов, то стандартный CART имеет тенденцию пропускать важные взаимодействия. Однако проведение искривления и тестов взаимодействия для выбора предиктора вместо этого может улучшить обнаружение важных взаимодействий, которые могут дать к более точным деревьям решений.
Для получения дополнительной информации о том, как тест взаимодействия применяется к росту деревьев решений, смотрите Тест Искривления, Правила Расщепления узлов и [2].
predictive measure of association является значением, которое указывает, что подобие между решением управляет что наблюдения разделения. Среди всех возможных разделений решения, которые сравниваются с оптимальным разделением (найденный путем роста дерева), лучшее суррогатное разделение решения дает к максимальной прогнозирующей мере ассоциации. Второсортное суррогатное разделение имеет вторую по величине прогнозирующую меру ассоциации.
Предположим, что xj и xk являются переменными предикторами j и k, соответственно, и j ≠ k. В узле t прогнозирующая мера ассоциации между оптимальным разделением xj <u и суррогат разделяют xk <v
PL является пропорцией наблюдений в узле t, такой что xj <u. Индекс L выдерживает за покинутый дочерний элемент узла t.
PR является пропорцией наблюдений в узле t, такой что xj ≥ u. Индекс R выдерживает за правильный дочерний элемент узла t.
пропорция наблюдений в узле t, такой что xj <u и xk <v.
пропорция наблюдений в узле t, такой что xj ≥ u и xk ≥ v.
Наблюдения с отсутствующими значениями для xj или xk не способствуют вычислениям пропорции.
λjk является значением в (– ∞, 1]. Если λjk> 0, то xk <v является стоящим суррогатным разделением для xj <u.
surrogate decision split является альтернативой оптимальному разделению решения в данном узле в дереве решений. Оптимальное разделение найдено путем роста дерева; суррогатное разделение использует подобный или коррелированый переменный предиктор и критерий разделения.
Когда значение оптимального предиктора разделения для наблюдения отсутствует, наблюдение отправляется в левый или правый дочерний узел с помощью лучшего суррогатного предиктора. Когда значение лучшего суррогатного предиктора разделения для наблюдения также отсутствует, наблюдение отправляется в левый или правый дочерний узел с помощью второсортного суррогатного предиктора и так далее. Разделения кандидата сортируются в порядке убывания их прогнозирующей мерой ассоциации.
По умолчанию, Prune
'on'
. Однако эта спецификация не сокращает дерево регрессии. Чтобы сократить обученное дерево регрессии, передайте дерево регрессии prune
.
После обучения модель можно сгенерировать код C/C++, который предсказывает ответы для новых данных. Генерация кода C/C++ требует MATLAB Coder™. Для получения дополнительной информации смотрите Введение в Генерацию кода.
fitrtree
использование эти процессы, чтобы определить, как разделить узел t.
Для стандартного CART (то есть, если PredictorSelection
'allpairs'
) и для всех предикторов xi, i = 1..., p:
fitrtree
вычисляет квадратичную невязку взвешенного среднего (MSE) ответов в узле использование t
wj является весом наблюдения j, и T является набором всех индексов наблюдения в узле t. Если вы не задаете Weights
, затем wj = 1/n, где n является объемом выборки.
fitrtree
оценивает вероятность, что наблюдение находится в узле использование t
fitrtree
виды xi в порядке возрастания. Каждым элементом отсортированного предиктора является разделяющий кандидат или точка разделения. fitrtree
записи любые индексы, соответствующие отсутствующим значениям в наборе TU, который является неразделенным набором.
fitrtree
определяет лучший способ разделить узел t с помощью xi путем максимизации сокращения MSE (ΔI) по всем кандидатам разделения. Таким образом, для всех кандидатов разделения в xi:
fitrtree
разделяет наблюдения в узле t в левые и правые дочерние узлы (tL и tR, соответственно).
fitrtree
вычисляет ΔI. Предположим, что для конкретного кандидата разделения, tL и tR содержат индексы наблюдения в наборах TL и TR, соответственно.
Если xi не содержит отсутствующих значений, то сокращение MSE для текущего кандидата разделения
Если xi содержит отсутствующие значения, то, принимая, что наблюдения отсутствуют наугад, сокращение MSE
T TU является набором всех индексов наблюдения в узле t, которые не отсутствуют.
Если вы используете суррогатные разделения решения, то:
fitrtree
вычисляет прогнозирующие меры ассоциации между разделением решения xj <u и все возможное решение разделяют xk <v, j ≠ k.
fitrtree
сортирует возможные альтернативные разделения решения в порядке убывания по их прогнозирующей мере связи с оптимальным разделением. Суррогатное разделение является разделением решения, дающим к самой большой мере.
fitrtree
решает дочерние присвоения узла для наблюдений с отсутствующим значением для xi с помощью суррогатного разделения. Если суррогатный предиктор также содержит отсутствующее значение, то fitrtree
использует разделение решения со второй по величине мерой, и так далее, пока нет никаких других суррогатов. Это возможно для fitrtree
разделять два различных наблюдения в узле t с помощью двух различных суррогатных разделений. Например, предположите предикторы, x 1 и x 2 является лучшими и почти лучшими суррогатами, соответственно, для предиктора xi, i ∉ {1,2}, в узле t. Если наблюдение m предиктора, который пропускает xi (т.е. xmi отсутствует), но x m 1 не отсутствует, то x 1 является суррогатным предиктором для наблюдения xmi. Если наблюдения x (m + 1), i и x (m + 1), 1 отсутствует, но x (m + 1), 2 не отсутствует, то x 2 является суррогатным предиктором для наблюдения m + 1.
fitrtree
использует соответствующую формулу сокращения MSE. Таким образом, если fitrtree
сбои, чтобы присвоить все недостающие наблюдения в узле t к дочерним узлам с помощью суррогатных разделений, затем сокращение MSE являются ΔIU. В противном случае, fitrtree
использование ΔI для сокращения MSE.
fitrtree
выбирает кандидата, который дает к самому большому сокращению MSE.
fitrtree
разделяет переменный предиктор в точке разделения, которая максимизирует сокращение MSE.
Для теста искривления (то есть, если PredictorSelection
'curvature'
):
fitrtree
вычисляет остаточные значения для всех наблюдений в узле t. , который является взвешенным средним ответов в узле t. Веса являются весами наблюдения в Weights
.
fitrtree
наблюдения присвоений к одному из двух интервалов согласно знаку соответствующих остаточных значений. Позвольте zt быть номинальной переменной, которая содержит присвоения интервала для наблюдений в узле t.
fitrtree
проводит тесты искривления между каждым предиктором и zt. Для деревьев регрессии, K = 2.
Если весь p - значения - по крайней мере 0,05, то fitrtree
не разделяет узел t.
Если существует минимальный p - значение, то fitrtree
выбирает соответствующий предиктор, чтобы разделить узел t.
Если больше чем один p - значение является нулем, должным потерять значимость, то fitrtree
применяет стандартный CART к соответствующим предикторам, чтобы выбрать предиктор разделения.
Если fitrtree
выбирает предиктор разделения, затем он использует стандартный CART, чтобы выбрать точку разделения (см. шаг 4 в стандартном процессе CART).
Для теста взаимодействия (то есть, если PredictorSelection
'interaction-curvature'
):
Для наблюдений в узле t, fitrtree
проводит тесты искривления между каждым предиктором и ответом и тесты взаимодействия между каждой парой предикторов и ответом.
Если весь p - значения - по крайней мере 0,05, то fitrtree
не разделяет узел t.
Если существует минимальный p - значение, и это - результат теста искривления, то fitrtree
выбирает соответствующий предиктор, чтобы разделить узел t.
Если существует минимальный p - значение, и это - результат теста взаимодействия, то fitrtree
выбирает предиктор разделения с помощью стандартного CART на соответствующей паре предикторов.
Если больше чем один p - значение является нулем, должным потерять значимость, то fitrtree
применяет стандартный CART к соответствующим предикторам, чтобы выбрать предиктор разделения.
Если fitrtree
выбирает предиктор разделения, затем он использует стандартный CART, чтобы выбрать точку разделения (см. шаг 4 в стандартном процессе CART).
Если MergeLeaves
'on'
и PruneCriterion
'mse'
(которые являются значениями по умолчанию для этих аргументов пары "имя-значение"), затем программное обеспечение применяет сокращение только к листам и при помощи MSE. Эта спецификация составляет слияние листов, прибывающих из того же родительского узла, MSE которого является самое большее суммой MSE ее двух листов.
Вмещать MaxNumSplits
, fitrtree
разделения все узлы в текущем layer, и затем считают количество узлов ветви. Слой является набором узлов, которые являются равноотстоящими от корневого узла. Если количество узлов ветви превышает MaxNumSplits
, fitrtree
выполняет эту процедуру:
Определите, сколько узлов ветви в текущем слое должно быть не разделено так, чтобы было в большей части MaxNumSplits
узлы ветви.
Сортировка узлов ветви их примесными усилениями.
Неразделенный количество наименее успешных ветвей.
Возвратите дерево решений, выращенное до сих пор.
Эта процедура производит максимально сбалансированные деревья.
Слой узлов ветви разделений программного обеспечения слоем до по крайней мере одного из этих событий происходит:
Существует MaxNumSplits
узлы ветви.
Предложенное разделение заставляет количество наблюдений по крайней мере в одном узле ветви быть меньше, чем MinParentSize
.
Предложенное разделение заставляет количество наблюдений по крайней мере в одной вершине быть меньше, чем MinLeafSize
.
Алгоритм не может найти хорошее разделение на слое (т.е. критерий сокращения (см. PruneCriterion
), не улучшается для всех предложенных разделений в слое). Особый случай - когда все узлы чисты (i.e., все наблюдения в узле имеют тот же класс).
Для значений 'curvature'
или 'interaction-curvature'
из PredictorSelection
, все тесты дают к p - значения, больше, чем 0,05.
MaxNumSplits
и MinLeafSize
не влияйте на разделение в их значениях по умолчанию. Поэтому, если вы устанавливаете 'MaxNumSplits'
, разделение может остановиться из-за значения MinParentSize
, перед MaxNumSplits
разделения происходят.
Для двухъядерных систем и выше, fitrtree
параллелизирует учебные деревья решений с помощью Intel® Threading Building Blocks (TBB). Для получения дополнительной информации на Intel TBB, см. https://software.intel.com/en-us/intel-tbb.
[1] Бреимен, L., Дж. Фридман, Р. Олшен и К. Стоун. Классификация и деревья регрессии. Бока-Ратон, FL: нажатие CRC, 1984.
[2] Loh, W.Y. “Деревья регрессии с Несмещенным Обнаружением Выбора переменной и Взаимодействия”. Statistica Sinica, Издание 12, 2002, стр 361–386.
[3] Loh, В.И. и И.С. Ши. “Разделите Методы выбора для Деревьев Классификации”. Statistica Sinica, Издание 7, 1997, стр 815–840.
Указания и ограничения по применению:
Поддерживаемые синтаксисы:
tree = fitrtree(Tbl,Y)
tree = fitrtree(X,Y)
tree = fitrtree(___,Name,Value)
[tree,FitInfo,HyperparameterOptimizationResults] = fitrtree(___,Name,Value)
— fitrtree
возвращает дополнительные выходные аргументы FitInfo
и HyperparameterOptimizationResults
когда вы задаете 'OptimizeHyperparameters'
аргумент пары "имя-значение".
tree
CompactRegressionTree
объект; поэтому, это не включает данные, используемые в обучение дерево регрессии.
FitInfo
выходным аргументом является пустой массив структур, в настоящее время зарезервированный для возможного будущего использования.
HyperparameterOptimizationResults
выходным аргументом является BayesianOptimization
возразите или таблица гиперпараметров с присваиваемыми значениями, которые описывают оптимизацию перекрестной проверки гиперпараметров.
'HyperparameterOptimizationResults'
непусто когда 'OptimizeHyperparameters'
аргумент пары "имя-значение" непуст в то время, когда вы создаете модель. Значения в 'HyperparameterOptimizationResults'
зависьте от значения, которое вы задаете для 'HyperparameterOptimizationOptions'
аргумент пары "имя-значение", когда вы создаете модель.
Если вы задаете 'bayesopt'
(значение по умолчанию), затем HyperparameterOptimizationResults
объект класса BayesianOptimization
.
Если вы задаете 'gridsearch'
или 'randomsearch'
, затем HyperparameterOptimizationResults
таблица гиперпараметров используемые, наблюдаемые значения целевой функции (потеря перекрестной проверки), и ранг наблюдений от самого низкого (лучше всего) к (худшему) самому высокому.
Поддерживаемые аргументы пары "имя-значение":
'CategoricalPredictors'
'HyperparameterOptimizationOptions'
— Для перекрестной проверки высокая оптимизация поддерживает только 'Holdout'
валидация. Например, можно задать fitrtree(X,Y,'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions',struct('Holdout',0.2))
.
'MaxNumSplits'
— Для высокой оптимизации, fitrtree
поисковые запросы среди целых чисел, масштабируемых журналом (по умолчанию) в области значений [1,max(2,min(10000,NumObservations–1))]
.
'MergeLeaves'
'MinLeafSize'
— Для высокой оптимизации, fitrtree
поисковые запросы среди целых чисел, масштабируемых журналом (по умолчанию) в области значений [1,max(2,floor(NumObservations/2))]
.
'MinParentSize'
'NumVariablesToSample'
— Для высокой оптимизации, fitrtree
поисковые запросы среди целых чисел в области значений [1,max(2,NumPredictors)]
.
'OptimizeHyperparameters'
'PredictorNames'
'QuadraticErrorTolerance'
'ResponseName'
'ResponseTransform'
'SplitCriterion'
'Weights'
Этот дополнительный аргумент пары "имя-значение" характерен для длинных массивов:
'MaxDepth'
— Положительное целое число, задающее максимальную глубину выходного дерева. Задайте значение для этого аргумента, чтобы возвратить дерево, которое имеет меньше уровней и требует, чтобы меньше прошли через длинный массив, чтобы вычислить. Обычно алгоритм fitrtree
берет один проход через данные и дополнительную передачу для каждого древовидного уровня. Функция не устанавливает максимальную древовидную глубину по умолчанию.
Для получения дополнительной информации см. Раздел "Высокие массивы".
Чтобы выполнить параллельную гипероптимизацию параметров управления, используйте 'HyperparameterOptimizationOptions', struct('UseParallel',true)
аргумент пары "имя-значение" в вызове этой функции.
Для получения дополнительной информации о параллельной гипероптимизации параметров управления смотрите Параллельную Байесовую Оптимизацию.
Для более общей информации о параллельных вычислениях смотрите функции MATLAB Запуска с Автоматической Параллельной Поддержкой (Parallel Computing Toolbox).
predict
| prune
| RegressionPartitionedModel
| RegressionTree
| surrogateAssociation
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.