Сравнение MODWT и MODWTMRA

Этот пример демонстрирует различия между функциями MODWT и MODWTMRA. Разделы MODWT энергия сигнала через коэффициенты детали и масштабные коэффициенты. Проекты MODWTMRA сигнал на подпространства вейвлета и масштабирующееся подпространство.

Выберите sym6 вейвлет. Загрузите и постройте электрокардиограмму (ECG) сигнал. Частота дискретизации для сигнала ECG составляет 180 герц. Данные взяты от Персиваля и Уолдена (2000), p.125 (данные, первоначально обеспеченные Уильямом Константином и На Reinhall, Вашингтонский университет).

load wecg
t = (0:numel(wecg)-1)/180;
wv = 'sym6';
plot(t,wecg)
grid on
title(['Signal Length = ',num2str(numel(wecg))])
xlabel('Time (s)')
ylabel('Amplitude')

Возьмите MODWT сигнала.

wtecg = modwt(wecg,wv);

Входные данные являются выборками функции f(x) оцененный в N- много моментов времени. Функция может быть описана как линейная комбинация масштабирующейся функции ϕ(x) и вейвлет ψ(x)в различных шкалах и переводах: f(x)=k=0N-1ck2-J0/2ϕ(2-J0x-k)+j=1J0fj(x) где fj(x)=k=0N-1dj,k2-j/2ψ(2-jx-k) и J0 количество уровней разложения вейвлета. Первая сумма является крупным приближением шкалы сигнала, и fj(x) детали в последовательных шкалах. MODWT возвращается N- много коэффициентов {ck}и (J0×N)- много коэффициентов детали {dj,k} из расширения. Каждая строка в wtecg содержит коэффициенты в различной шкале.

При взятии MODWT сигнала длины N, существуют floor(log2(N))- много уровней разложения (по умолчанию). Коэффициенты детали производятся на каждом уровне. Масштабные коэффициенты возвращены только для итогового уровня. В этом примере, с тех пор N=2048, J0=пол(log2(2048))=11 и количество строк в wtecg J0+1=11+1=12.

Разделы MODWT энергия через различные шкалы и масштабные коэффициенты: ||X||2=j=1J0||Wj||2+||VJ0||2 где X входные данные, Wj коэффициенты детали в шкале j, и VJ0 масштабные коэффициенты итогового уровня.

Вычислите энергию в каждой шкале и оцените их сумму.

energy_by_scales = sum(wtecg.^2,2);
Levels = {'D1';'D2';'D3';'D4';'D5';'D6';'D7';'D8';'D9';'D10';'D11';'A11'};
energy_table = table(Levels,energy_by_scales);
disp(energy_table)
    Levels     energy_by_scales
    _______    ________________

    {'D1' }         14.063     
    {'D2' }         20.612     
    {'D3' }         37.716     
    {'D4' }         25.123     
    {'D5' }         17.437     
    {'D6' }         8.9852     
    {'D7' }         1.2906     
    {'D8' }         4.7278     
    {'D9' }         12.205     
    {'D10'}         76.428     
    {'D11'}         76.268     
    {'A11'}         3.4192     
energy_total = varfun(@sum,energy_table(:,2))
energy_total=table
    sum_energy_by_scales
    ____________________

           298.28       

Подтвердите, что MODWT является сохранением энергии путем вычисления энергии сигнала и сравнения его с суммой энергий по всем шкалам.

energy_ecg = sum(wecg.^2);
max(abs(energy_total.sum_energy_by_scales-energy_ecg))
ans = 7.4402e-10

Возьмите MODWTMRA сигнала.

mraecg = modwtmra(wtecg,wv);

MODWTMRA возвращает проекции функции f(x) на различные подпространства вейвлета и итоговый пробел масштабирования. Таким образом, MODWTMRA возвращается k=0N-1ck2-J0/2ϕ(2-J0x-k)и J0- многие {fj(x)}оцененный в N- много моментов времени. Каждая строка в mraecg проекция f(x) на различное подпространство. Это означает, что исходный сигнал может быть восстановлен путем добавления всех проекций. Это не верно в случае MODWT. Добавление коэффициентов в wtecg не восстановит исходный сигнал.

Выберите момент времени, добавьте проекции f(x) оцененный в то время указывают и соответствуют исходному сигналу.

time_point = 1000;
abs(sum(mraecg(:,time_point))-wecg(time_point))
ans = 3.0846e-13

Подтвердите, что, в отличие от MODWT, MODWTMRA не является сохраняющим энергию преобразованием.

energy_ecg = sum(wecg.^2);
energy_mra_scales = sum(mraecg.^2,2);
energy_mra = sum(energy_mra_scales);
max(abs(energy_mra-energy_ecg))
ans = 115.7053

MODWTMRA является фильтрацией нулевой фазы сигнала. Функции будут выровнены временем. Продемонстрируйте это путем графического вывода исходного сигнала и одной из его проекций. Чтобы лучше проиллюстрировать выравнивание, увеличить масштаб.

plot(t,wecg,'b')
hold on
plot(t,mraecg(4,:),'-')
hold off
grid on
xlim([4 8])
legend('Signal','Projection','Location','northwest')
xlabel('Time (s)')
ylabel('Amplitude')

Сделайте подобный график с помощью коэффициентов MODWT в той же шкале. Обратите внимание на то, что функции не будут выровнены временем. MODWT не является фильтрацией нулевой фазы входа.

plot(t,wecg,'b')
hold on
plot(t,wtecg(4,:),'-')
hold off
grid on
xlim([4 8])
legend('Signal','Coefficients','Location','northwest')
xlabel('Time (s)')
ylabel('Amplitude')

Ссылки

[1] Персиваль, D. B. и А. Т. Уолден. Методы вейвлета для анализа временных рядов. Кембридж, Великобритания: Издательство Кембриджского университета, 2000.

Смотрите также

|