Компенсируйте модулируемые сигналы с помощью фильтрации обратной связи решения
comm.DecisionFeedbackEqualizer
Система object™ использует линию задержки касания фильтра обратной связи решения со взвешенной суммой, чтобы компенсировать модулируемые сигналы, переданные через дисперсионный канал. Объект эквалайзера адаптивно настраивает веса касания на основе выбранного алгоритма. Для получения дополнительной информации см. Алгоритмы.
Компенсировать модулируемые сигналы с помощью фильтра обратной связи решения:
Создайте comm.DecisionFeedbackEqualizer
объект и набор его свойства.
Вызовите объект с аргументами, как будто это была функция.
Чтобы узнать больше, как Системные объекты работают, смотрите то, Что Системные объекты?.
создает Системный объект эквалайзера обратной связи решения, чтобы адаптивно компенсировать сигнал.dfe
= comm.DecisionFeedbackEqualizer
свойства наборов с помощью одной или нескольких пар "имя-значение". Например, dfe
= comm.DecisionFeedbackEqualizer(Name
,Value
)comm.DecisionFeedbackEqualizer('Algorithm','RLS')
конфигурирует объект эквалайзера обновить веса касания с помощью алгоритма рекурсивных наименьших квадратов (RLS). Заключите каждое имя свойства в кавычки.
Если в противном случае не обозначено, свойства являются ненастраиваемыми, что означает, что вы не можете изменить их значения после вызова объекта. Объекты блокируют, когда вы вызываете их, и release
функция разблокировала их.
Если свойство является настраиваемым, можно изменить его значение в любое время.
Для получения дополнительной информации об изменении значений свойств смотрите Разработку системы в MATLAB Используя Системные объекты.
Algorithm
— Адаптивный алгоритм'LMS'
(значение по умолчанию) | 'RLS'
| 'CMA'
Адаптивный алгоритм использовал для эквализации в виде одного из этих значений:
'LMS'
— Обновите веса касания эквалайзера с помощью Алгоритма Наименьшее количество среднего квадратичного (LMS).
'RLS'
— Обновите веса касания эквалайзера с помощью Алгоритма Рекурсивного наименьшего квадрата (RLS).
'CMA'
— Обновите веса касания эквалайзера с помощью Постоянного алгоритма модуля (CMA).
Типы данных: char |
string
NumForwardTaps
— Количество прямых касаний эквалайзера
(значение по умолчанию) | положительное целое числоКоличество прямого эквалайзера касается в виде положительного целого числа. Количество прямых касаний эквалайзера должно быть больше или быть равно значению InputSamplesPerSymbol
свойство.
Типы данных: double
NumFeedbackTaps
— Количество касаний эквалайзера обратной связи
(значение по умолчанию) | положительное целое числоКоличество эквалайзера обратной связи касается в виде положительного целого числа.
Типы данных: double
StepSize
Неродной размер
(значение по умолчанию) | положительная скалярная величинаРазмер шага используется адаптивным алгоритмом в виде положительной скалярной величины. Увеличение размера шага уменьшает время сходимости эквалайзера, но заставляет эквалайзер выходные оценки быть менее устойчивым.
Совет
Чтобы определить максимальный позволенный размер шага, используйте maxstep
объектная функция.
Настраиваемый: да
Чтобы включить это свойство, установите Алгоритм на 'LMS'
или 'CMA'
.
Типы данных: double
ForgettingFactor
— Упущение фактора
(значение по умолчанию) | скаляр в области значений (0, 1]Упущение фактора, используемого адаптивным алгоритмом в виде скаляра в области значений (0, 1]. Уменьшение фактора упущения уменьшает время сходимости эквалайзера, но заставляет эквалайзер выходные оценки быть менее устойчивым.
Настраиваемый: да
Чтобы включить это свойство, установите Алгоритм на 'RLS'
.
Типы данных: double
InitialInverseCorrelationMatrix
— Начальная матрица обратной корреляции
(значение по умолчанию) | скаляр | матрицаНачальная матрица обратной корреляции в виде скаляра или N Taps-by-NTaps матрица. Касания N равны сумме значений свойств NumForwardTaps и NumFeedbackTaps. Если вы задаете InitialInverseCorrelationMatrix
как скаляр, a, эквалайзер устанавливает начальную матрицу обратной корреляции на времена a единичная матрица: a (eye
(Касания N)).
Настраиваемый: да
Чтобы включить это свойство, установите Алгоритм на 'RLS'
.
Типы данных: double
Constellation
— Сигнальное созвездиеpskmod(0:3,4,pi/4)
(значение по умолчанию) | векторСигнальное созвездие в виде вектора. Значением по умолчанию является сгенерированное использование созвездия QPSK этого кода: pskmod(0:3,4,pi/4)
.
Настраиваемый: да
Типы данных: double
ReferenceTap
— Ссылочное касание
(значение по умолчанию) | положительное целое числоСсылочное касание в виде положительного целого числа, меньше чем или равного значению свойства NumForwardTaps. Эквалайзер использует ссылочное местоположение касания, чтобы отследить основную энергию канала.
Типы данных: double
InputDelay
— Задержка входного сигнала
(значение по умолчанию) | неотрицательное целое числоЗадержка входного сигнала выборок относительно времени сброса эквалайзера в виде неотрицательного целого числа. Если входной сигнал является вектором из длины, больше, чем 1, то входная задержка относительно запуска входного вектора. Если входной сигнал является скаляром, то входная задержка относительно первого вызова Системного объекта и к первому вызову Системного объекта после вызова release
или reset
объектная функция.
Типы данных: double
InputSamplesPerSymbol
— Количество входных выборок на символ
(значение по умолчанию) | положительное целое числоКоличество входных выборок на символ в виде положительного целого числа. При установке этого свойства на любой номер, больше, чем, каждый эффективно создает незначительно расположенный с интервалами эквалайзер.
Типы данных: double
TrainingFlagInputPort
— Включите учебный вход управленияfalse
(значение по умолчанию) | true
Включите учебный вход управления в виде false
или true
. Установка этого свойства к true
включает вход tf
флага обучения эквалайзера.
Настраиваемый: да
Типы данных: логический
AdaptAfterTraining
— Обновите веса касания если не обучениеtrue
(значение по умолчанию) | false
Обновите веса касания если не обучение в виде true
или false
. Если это свойство установлено в true
, Системный объект использует направленный режим решения, чтобы обновить веса касания эквалайзера. Если это свойство установлено в false
, Системный объект сохраняет веса касания эквалайзера неизменными после обучения.
Настраиваемый: да
Типы данных: логический
AdaptWeightsSource
— Источник адаптирует запрос весов касания'Property'
(значение по умолчанию) | 'Input port'
Источник адаптирует запрос весов касания в виде одного из этих значений:
'Property'
— Задайте это значение, чтобы использовать свойство AdaptWeights управлять, когда Системный объект адаптирует веса касания.
'Input port'
— Задайте это значение, чтобы использовать aw
введите, чтобы управлять, когда Системный объект адаптирует веса касания.
Чтобы включить это свойство, установите Алгоритм на 'CMA'
.
Типы данных: char |
string
AdaptWeights
— Адаптируйте веса касанияtrue
(значение по умолчанию) | false
Адаптируйте веса касания в виде true
или false
. Если это свойство установлено в true
, Системный объект обновляет веса касания эквалайзера. Если это свойство установлено в false
, Системный объект сохраняет веса касания эквалайзера неизменными.
Настраиваемый: да
Чтобы включить это свойство, установите AdaptWeightsSource на 'Property'
и набор AdaptAfterTraining к true
.
Типы данных: логический
InitialWeightsSource
— Источник для начальных весов касания'Auto'
(значение по умолчанию) | 'Property'
Источник для начальных весов касания в виде одного из этих значений:
'Auto'
— Инициализируйте веса касания к специфичным для алгоритма значениям по умолчанию, как описано в свойстве InitialWeights.
'Property'
— Инициализируйте веса касания с помощью значения свойства InitialWeights.
Типы данных: char |
string
InitialWeights
— Начальные веса
или [0;0;1;0;0]
(значение по умолчанию) | скаляр | векторНачальные веса, используемые адаптивным алгоритмом в виде скаляра или вектора. Значением по умолчанию является 0
когда свойство Algorithm установлено в 'LMS'
или 'RLS'
. Значением по умолчанию является [0;0;1;0;0]
когда свойство Algorithm установлено в 'CMA'
.
Если вы задаете InitialWeights
как скаляр, эквалайзер использует скалярное расширение, чтобы создать вектор из длины Касания N со всем набором значений к InitialWeights
. Касания N равны сумме значений свойств NumForwardTaps и NumFeedbackTaps. Если вы задаете InitialWeights
как вектор, длина вектора должна быть Касаниями N.
Настраиваемый: да
Типы данных: double
WeightUpdatePeriod
— Коснитесь периода обновления веса
(значение по умолчанию) | положительное целое числоКоснитесь периода обновления веса в символах в виде положительного целого числа. Эквалайзер обновляет веса касания после обработки этого количества символов.
Типы данных: double
также задает учебный флаг y
= dfe(x
,tsym
,tf
)tf
. Системный объект запускает обучение когда tf
изменения от false
к true
(в возрастающем ребре). Системный объект обучается до всех символов в tsym
обрабатываются. Вход tsym
проигнорирован когда tf
false
. Чтобы включить этот синтаксис, установите свойство Algorithm на 'LMS'
или 'RLS'
и свойство TrainingFlagInputPort к true
.
также задает, адаптирует флаг y
= dfe(x
,aw
)aw
весов. Системный объект адаптирует веса касания эквалайзера когда
aw
true
. Если aw
false
, Системный объект сохраняет веса неизменными. Чтобы включить этот синтаксис, установите свойство Algorithm на 'CMA'
и свойство AdaptWeightsSource к 'Input port'
.
x
— Входной сигналВходной сигнал в виде вектор-столбца. Длина вектора входного сигнала должна быть равна целочисленному кратному значение свойства InputSamplesPerSymbol. Для получения дополнительной информации смотрите, что Касание Символа Располагает с интервалами.
Типы данных: double
Поддержка комплексного числа: Да
tsym
— Учебные символыУчебные символы в виде вектор-столбца длины, меньше чем или равной длине входа x
. Вход tsym
проигнорирован когда tf
false
.
Чтобы включить этот аргумент, установите свойство Algorithm на 'LMS'
или 'RLS'
.
Типы данных: double
tf
— Учебный флагtrue
| false
Учебный флаг в виде true
или false
. Системный объект запускает обучение когда tf
изменения от false
к true
(в возрастающем ребре). Системный объект обучается до всех символов в tsym
обрабатываются. Вход tsym
проигнорирован когда tf
false
.
Чтобы включить этот аргумент, установите свойство Algorithm на 'LMS'
или 'RLS'
и свойство TrainingFlagInputPort к true
.
Типы данных: логический
aw
— Адаптируйте флаг весовtrue
| false
Адаптируйте флаг весов в виде true
или false
. Если aw
true
, Системный объект адаптирует веса. Если aw
false
, Системный объект сохраняет веса неизменными.
Чтобы включить этот аргумент, установите свойство Algorithm на 'CMA'
и свойство AdaptWeightsSource к 'Input port'
.
Типы данных: логический
y
— Компенсируемые символыКомпенсируемые символы, возвращенные как вектор-столбец, который имеет ту же длину как входной сигнал x
.
err
— Сигнал ошибкиСигнал ошибки, возвращенный как вектор-столбец, который имеет ту же длину как входной сигнал x
.
weights
— Коснитесь весовКоснитесь весов, возвращенных как вектор-столбец, который имеет элементы Касаний N. Касания N равны сумме значений свойств NumForwardTaps и NumFeedbackTaps. weights
содержит веса касания от последнего обновления веса касания.
Чтобы использовать объектную функцию, задайте Системный объект как первый входной параметр. Например, чтобы выпустить системные ресурсы Системного объекта под названием obj
, используйте этот синтаксис:
release(obj)
comm.DecisionFeedbackEqualizer
isLocked | Определите, используется ли Системный объект |
clone | Создайте объект дублированной системы |
info | Характеристическая информация об объекте эквалайзера |
maxstep | Максимальный размер шага для сходимости эквалайзера LMS |
mmseweights | Линейный эквалайзер MMSE касается весов |
Создайте модулятор BPSK и Систему эквалайзера object™, задав обратную связь решения эквалайзер LMS, имеющий восемь прямых касаний, пять касаний обратной связи и размер шага 0,03.
bpsk = comm.BPSKModulator; eqdfe_lms = comm.DecisionFeedbackEqualizer('Algorithm','LMS', ... 'NumForwardTaps',8,'NumFeedbackTaps',5,'StepSize',0.03);
Измените ссылочный индекс касания эквалайзера.
eqdfe_lms.ReferenceTap = 4;
Создайте набор тестовых данных. Получите данные путем свертки к сигналу.
x = bpsk(randi([0 1],1000,1)); rxsig = conv(x,[1 0.8 0.3]);
Используйте maxstep
найти максимальный разрешенный размер шага.
mxStep = maxstep(eqdfe_lms,rxsig)
mxStep = 0.1028
Компенсируйте полученный сигнал. Используйте первые 200 символов в качестве обучающей последовательности.
y = eqdfe_lms(rxsig,x(1:200));
Примените эквализацию обратной связи решения с помощью алгоритма наименьшее количество средних квадратичных (LMS), чтобы восстановиться, символы QPSK прошли через задержанный многопутевой канал AWGN.
Инициализируйте переменные симуляции.
M = 4; % QPSK
numSymbols = 10000;
numTrainingSymbols = 1000;
chtaps = [1 0.5*exp(1i*pi/6) 0.1*exp(-1i*pi/8)];
Сгенерируйте модулируемые QPSK символы. Примените задержанную многопутевую фильтрацию канала и нарушения AWGN к символам.
data = randi([0 M-1], numSymbols, 1);
tx = pskmod(data, M, pi/4);
rx = awgn(filter(chtaps,1,tx),25,'measured');
Создайте Системный объект эквалайзера обратной связи решения и отобразите настройку по умолчанию. Настройте ссылочное касание к 1
. Проверяйте максимальный разрешенный размер шага. Компенсируйте символы, которым повреждают.
eq = comm.DecisionFeedbackEqualizer
eq = comm.DecisionFeedbackEqualizer with properties: Algorithm: 'LMS' NumForwardTaps: 5 NumFeedbackTaps: 3 StepSize: 0.0100 Constellation: [1x4 double] ReferenceTap: 3 InputDelay: 0 InputSamplesPerSymbol: 1 TrainingFlagInputPort: false AdaptAfterTraining: true InitialWeightsSource: 'Auto' WeightUpdatePeriod: 1
eq.ReferenceTap = 1; mxStep = maxstep(eq,rx)
mxStep = 0.2141
[y,err,weights] = eq(rx,tx(1:numTrainingSymbols));
Постройте созвездие которым повреждают и компенсируемых символов.
constell = comm.ConstellationDiagram('NumInputPorts',2);
constell(rx,y)
Постройте сигнал ошибки эквалайзера и вычислите величину вектора ошибок компенсируемых символов.
plot(abs(err)) grid on; xlabel('Symbols'); ylabel('|e|')
errevm = comm.EVM; evm = errevm(tx,y)
evm = 10.1621
Постройте веса касания эквалайзера.
subplot(3,1,1); stem(real(weights)); ylabel('real(weights)'); xlabel('Tap'); grid on; axis([1 8 -0.5 1]) line([eq.NumForwardTaps+0.5 eq.NumForwardTaps+0.5], [-0.5 1], 'Color', 'r', 'LineWidth', 1) title('Equalizer Tap Weights') subplot(3,1,2); stem(imag(weights)); ylabel('imag(weights)'); xlabel('Tap'); grid on; axis([1 8 -0.5 1]) line([eq.NumForwardTaps+0.5 eq.NumForwardTaps+0.5], [-0.5 1], 'Color', 'r', 'LineWidth', 1) subplot(3,1,3); stem(abs(weights)); ylabel('abs(weights)'); xlabel('Tap'); grid on; axis([1 8 -0.5 1]) line([eq.NumForwardTaps+0.5 eq.NumForwardTaps+0.5], [-0.5 1], 'Color', 'r', 'LineWidth', 1)
Продемонстрируйте, что эквализация обратной связи решения с помощью алгоритма наименьшее количество средних квадратичных (LMS), чтобы восстановить символы QPSK прошла через канал AWGN. Примените различные планы подготовки эквалайзера и покажите ошибочную величину символа.
Системный Setup
Симулируйте модулируемую QPSK систему, удовлетворяющую AWGN. Передайте пакеты, состоявшие из 200 учебных символов и 1 800 случайных символов данных. Сконфигурируйте обратную связь решения эквалайзер LMS, чтобы восстановить пакетные данные.
M = 4; numTrainSymbols = 200; numDataSymbols = 1800; SNR = 20; trainingSymbols = pskmod(randi([0 M-1],numTrainSymbols,1),M,pi/4); numPkts = 10; dfeq = comm.DecisionFeedbackEqualizer('Algorithm','LMS', ... 'NumForwardTaps',5,'NumFeedbackTaps',4,'ReferenceTap',3,'StepSize',0.01);
Обучите эквалайзер в начале каждого пакета со сбросом
Процесс каждый пакет с помощью предварительно ожидаемых учебных символов. Сбросьте эквалайзер после обработки каждого пакета. При сбросе эквалайзера после того, как каждый пакет обеспечивает эквалайзер, чтобы обучить касания без априорного знания. Графики сигнала ошибки эквалайзера для первого, второго, и последнего пакета показывают более высокие ошибки символа в начале каждого пакета.
jj = 1; figure for ii = 1:numPkts b = randi([0 M-1],numDataSymbols,1); dataSym = pskmod(b,M,pi/4); packet = [trainingSymbols;dataSym]; rx = awgn(packet,SNR); [~,err] = dfeq(rx,trainingSymbols); reset(dfeq) if (ii ==1 || ii == 2 ||ii == numPkts) subplot(3,1,jj) plot(abs(err)) ylim([0 1]) title(['Packet # ',num2str(ii)]) xlabel('Symbols'); ylabel('Error Magnitude'); grid on; jj = jj+1; end end
Обучите эквалайзер в начале каждого пакета без сброса
Процесс каждый пакет с помощью предварительно ожидаемых учебных символов. Не сбрасывайте эквалайзер после того, как каждый пакет будет обработан. Не сбрасывая после каждого пакета, эквалайзер сохраняет веса касания от учебных предшествующих пакетов. Графики сигнала ошибки эквалайзера для первого, второго, и последнего пакета показывают, что после начальной подготовки на первом пакете, последующие пакеты имеют меньше ошибок символа в начале каждого пакета.
release(dfeq) jj = 1; figure for ii = 1:numPkts b = randi([0 M-1],numDataSymbols,1); dataSym = pskmod(b,M,pi/4); packet = [trainingSymbols;dataSym]; channel = 1; rx = awgn(packet*channel,SNR); [~,err] = dfeq(rx,trainingSymbols); if (ii ==1 || ii == 2 ||ii == numPkts) subplot(3,1,jj) plot(abs(err)) ylim([0 1]) title(['Packet # ',num2str(ii)]) xlabel('Symbols'); ylabel('Error Magnitude'); grid on; jj = jj+1; end end
Обучайте эквалайзер периодически
Системы с сигналами, удовлетворяющими изменяющимся во времени каналам, требуют, чтобы периодическое обучение эквалайзера обеспечить соединило изменения канала. Задайте систему, которая имеет 200 символов обучения каждым 1 800 символам данных. Между обучением эквалайзер не обновляет веса касания. Процессы эквалайзера 200 символов на пакет.
Rs = 1e6;
fd = 20;
spp = 200; % Symbols per packet
b = randi([0 M-1],numDataSymbols,1);
dataSym = pskmod(b,M,pi/4);
packet = [trainingSymbols; dataSym];
stream = repmat(packet,10,1);
tx = (0:length(stream)-1)'/Rs;
channel = exp(1i*2*pi*fd*tx);
rx = awgn(stream.*channel,SNR);
Установите AdaptAfterTraining
свойство к false
чтобы остановить эквалайзер касаются обновлений веса после учебной фазы.
release(dfeq) dfeq.AdaptAfterTraining = false
dfeq = comm.DecisionFeedbackEqualizer with properties: Algorithm: 'LMS' NumForwardTaps: 5 NumFeedbackTaps: 4 StepSize: 0.0100 Constellation: [1x4 double] ReferenceTap: 3 InputDelay: 0 InputSamplesPerSymbol: 1 TrainingFlagInputPort: false AdaptAfterTraining: false InitialWeightsSource: 'Auto' WeightUpdatePeriod: 1
Компенсируйте данные, которым повреждают. Постройте угловую погрешность от канала, сигнала ошибки эквалайзера и сигнального созвездия. Когда канал варьируется, эквалайзер, выход не удаляет эффекты канала. Кроме того, выходное созвездие вращается из синхронизации, приводящей к битовым ошибкам.
[y,err] = dfeq(rx,trainingSymbols); figure subplot(2,1,1) plot(tx, unwrap(angle(channel))) xlabel('Time (sec)') ylabel('Channel Angle (rad)') title('Angular Error Over Time') subplot(2,1,2) plot(abs(err)) xlabel('Symbols') ylabel('Error Magnitude') grid on title('Time-Varying Channel Without Retraining')
scatterplot(y)
Установите TrainingInputPort
свойство к true
сконфигурировать эквалайзер, чтобы переобучить касания, когда сообщено trainFlag
входной параметр. Эквалайзер обучается только когда trainFlag
true
. После каждых 2 000 символов эквалайзер переобучает касания и сохраняет, соединяют изменения канала. Постройте угловую погрешность от канала, сигнала ошибки эквалайзера и сигнального созвездия. Когда канал варьируется, эквалайзер, выход удаляет эффекты канала. Кроме того, выходное созвездие не вращается из синхронизации, и битовые ошибки уменьшаются.
release(dfeq) dfeq.TrainingFlagInputPort = true; symbolCnt = 0; numPackets = length(rx)/spp; trainFlag = true; trainingPeriod = 2000; eVec = zeros(size(rx)); yVec = zeros(size(rx)); for p=1:numPackets [yVec((p-1)*spp+1:p*spp,1),eVec((p-1)*spp+1:p*spp,1)] = ... dfeq(rx((p-1)*spp+1:p*spp,1),trainingSymbols,trainFlag); symbolCnt = symbolCnt + spp; if symbolCnt >= trainingPeriod trainFlag = true; symbolCnt = 0; else trainFlag = false; end end figure subplot(2,1,1) plot(tx, unwrap(angle(channel))) xlabel('t (sec)') ylabel('Channel Angle (rad)') title('Angular Error Over Time') subplot(2,1,2) plot(abs(eVec)) xlabel('Symbols') ylabel('Error Magnitude') grid on title('Time-Varying Channel With Retraining')
scatterplot(yVec)
Симулируйте систему с задержкой между переданными символами и полученными выборками. Типичные системы имеют фильтры передатчика и приемника, которые приводят к задержке. Эта задержка должна составляться, чтобы синхронизировать систему. В этом примере системная задержка введена без передачи, и получите фильтры. Эквализация обратной связи решения, с помощью алгоритма наименьшее количество средних квадратичных (LMS), восстанавливает символы QPSK.
Инициализируйте переменные симуляции.
M = 4; % QPSK
numSymbols = 10000;
numTrainingSymbols = 1000;
mpChan = [1 0.5*exp(1i*pi/6) 0.1*exp(-1i*pi/8)];
systemDelay = dsp.Delay(20);
snr = 24;
Сгенерируйте модулируемые QPSK символы. Примените многопутевую фильтрацию канала, системную задержку и AWGN к переданным символам.
data = randi([0 M-1],numSymbols,1); tx = pskmod(data,M,pi/4); % OQPSK delayedSym = systemDelay(filter(mpChan,1,tx)); rx = awgn(delayedSym,snr,'measured');
Создайте эквалайзер и Системные объекты EVM. Системный объект эквалайзера задает эквалайзер обратной связи решения с помощью LMS-алгоритма.
dfeq = comm.DecisionFeedbackEqualizer('Algorithm','LMS', ... 'NumForwardTaps',9,'NumFeedbackTaps',6,'ReferenceTap',5); evm = comm.EVM('ReferenceSignalSource', ... 'Estimated from reference constellation');
Компенсируйте, не настраивая входную задержку
Компенсируйте полученные символы.
[y1,err1,wts1] = dfeq(rx,tx(1:numTrainingSymbols,1));
Найдите задержку между полученными символами и переданными символами при помощи finddelay
функция.
rxDelay = finddelay(tx,rx)
rxDelay = 20
Отобразите информацию об эквалайзере. Значение задержки указывает на задержку, введенную эквалайзером. Вычислите общую задержку как сумму rxDelay
и задержка эквалайзера.
eqInfo = info(dfeq)
eqInfo = struct with fields:
Latency: 4
totalDelay = rxDelay + eqInfo.Latency;
Пока эквалайзер, выход сходится, коэффициент ошибок символа, не высок. Постройте вывод ошибок, err1
, определить, когда компенсируемый выход сходится.
plot(abs(err1)) xlabel('Symbols') ylabel('Error Magnitude') title('Equalizer Error Signal')
График показывает чрезмерные ошибки для первых 2 000 символов. При демодуляции символов и вычислительных ошибок символа, объясните не сходившийся выход и системную задержку между эквалайзером выход и переданными символами.
dataRec1 = pskdemod(y1(2000+totalDelay:end),M,pi/4); symErrWithDelay = symerr(data(2000:end-totalDelay),dataRec1)
symErrWithDelay = 6001
evmWithDelay = evm(y1)
evmWithDelay = 25.6868
Коэффициент ошибок и EVM высоки, потому что получить задержка не составлялась в Системном объекте эквалайзера.
Настройте входную задержку эквалайзера обратной связи решения
Компенсируйте полученные данные при помощи значения задержки, чтобы установить InputDelay
свойство. Начиная с InputDelay
ненастраиваемое свойство, необходимо выпустить dfeq
Системный объект, чтобы реконфигурировать InputDelay
свойство. Компенсируйте полученные символы.
release(dfeq) dfeq.InputDelay = rxDelay
dfeq = comm.DecisionFeedbackEqualizer with properties: Algorithm: 'LMS' NumForwardTaps: 9 NumFeedbackTaps: 6 StepSize: 0.0100 Constellation: [1x4 double] ReferenceTap: 5 InputDelay: 20 InputSamplesPerSymbol: 1 TrainingFlagInputPort: false AdaptAfterTraining: true InitialWeightsSource: 'Auto' WeightUpdatePeriod: 1
[y2,err2,wts2] = dfeq(rx,tx(1:numTrainingSymbols,1));
Постройте веса касания и компенсируемую ошибочную величину. Диаграмма стебель-листья показывает, что веса касания эквалайзера до и после системной задержки удалены. 2D график показывает более медленную сходимость эквалайзера для задержанного сигнала, по сравнению с сигналом с удаленной задержкой.
subplot(2,1,1) stem([real(wts1),real(wts2)]) xlabel('Taps') ylabel('Tap Weight Real') legend('rxDelayed','rxDelayRemoved') grid on subplot(2,1,2) stem([imag(wts1),imag(wts2)]) xlabel('Taps') ylabel('Tap Weight Imaginary') legend('rxDelayed','rxDelayRemoved') grid on
figure plot([abs(err1),abs(err2)]) xlabel('Symbols') ylabel('Error Magnitude') legend('rxDelayed','rxDelayRemoved') grid on
Постройте вывод ошибок компенсируемых сигналов, rxDelayed
и rxDelayRemoved
. Для сигнала, которому удалили задержку, эквалайзер сходится во время 1 000 периодов подготовки символа. Когда демодуляция символов и вычислительных ошибок символа, с учетом не сходившегося выхода и системной задержки между эквалайзером выход и переданными символами, пропускает первые 500 символов. Реконфигурирование эквалайзера с учетом системной задержки включает лучшую эквализацию сигнала и уменьшает ошибки символа и EVM.
eqInfo = info(dfeq)
eqInfo = struct with fields:
Latency: 4
totalDelay = rxDelay + eqInfo.Latency; dataRec2 = pskdemod(y2(500+totalDelay:end),M,pi/4); symErrDelayRemoved = symerr(data(500:end-totalDelay),dataRec2)
symErrDelayRemoved = 0
evmDelayRemoved = evm(y2(500+totalDelay:end))
evmDelayRemoved = 7.5147
Восстановите символы QPSK с эквалайзером решения, с помощью постоянного алгоритма модуля (CMA) и основанного на EVM обучения касаний. При использовании слепых алгоритмов эквалайзера, таких как CMA, можно обучить касания эквалайзера с помощью AdaptWeights
свойство запуститься и остановить обучение. Используйте функции помощника, чтобы сгенерировать графики и применить коррекцию фазы.
Инициализируйте системные переменные.
rng(123456); M = 4; % QPSK numSymbols = 100; numPackets = 5000; refTap = 3; nFwdTaps = 5; nFdbkTaps = 4; ttlTaps = nFwdTaps + nFdbkTaps; raylChan = comm.RayleighChannel('PathDelays',[0 1], ... 'AveragePathGains',[0 -12],'MaximumDopplerShift',1e-5); SNR = 50; adaptWeights = true;
Создайте эквалайзер и Системные объекты EVM. Системный объект эквалайзера задает эквалайзер обратной связи решения с помощью CMA адаптивный алгоритм. Вызовите функцию помощника, чтобы инициализировать графики фигуры.
dfeq = comm.DecisionFeedbackEqualizer('Algorithm','CMA', ... 'NumForwardTaps',nFwdTaps,'NumFeedbackTaps',nFdbkTaps,'ReferenceTap',refTap, ... 'StepSize',0.03,'AdaptWeightsSource','Input port')
dfeq = comm.DecisionFeedbackEqualizer with properties: Algorithm: 'CMA' NumForwardTaps: 5 NumFeedbackTaps: 4 StepSize: 0.0300 Constellation: [1x4 double] ReferenceTap: 3 InputSamplesPerSymbol: 1 AdaptWeightsSource: 'Input port' InitialWeightsSource: 'Auto' WeightUpdatePeriod: 1
info(dfeq)
ans = struct with fields:
Latency: 2
evm = comm.EVM('ReferenceSignalSource', ... 'Estimated from reference constellation'); [errPlot,evmPlot,scatSym,adaptState] = initFigures(numPackets,ttlTaps);
Цикл эквализации
Выполните эти шаги, чтобы реализовать цикл эквализации.
Сгенерируйте пакеты данных OQPSK.
Примените Релеевское замирание и AWGN к данным о передаче.
Примените эквализацию к полученным данным и коррекцию фазы к эквалайзеру выход.
Оцените EVM и переключите adaptWeights
отметьте к true
или false
на основе уровня EVM.
Обновите графики фигуры.
for p=1:numPackets data = randi([0 M-1],numSymbols,1); tx = pskmod(data,M,pi/4); rx = awgn(raylChan(tx),SNR); rxDelay = finddelay(rx,tx); [y,err,wts] = dfeq(rx,adaptWeights); y = phaseCorrection(y); evmEst = evm(y); adaptWeights = (evmEst > 20); updateFigures(errPlot,evmPlot,scatSym,adaptState, ... wts,y(end),evmEst,adaptWeights,p,numPackets) end
rxDelay
rxDelay = 0
Графики фигуры показывают, что, когда EVM варьируется, переключатели эквалайзера в и из направленного на решение режима адаптации веса.
Функции помощника
Эта функция помощника инициализирует фигуры, которые показывают квадратический график результатов симуляции.
function [errPlot,evmPlot,scatter,adaptState] = initFigures(numPkts,ttlTaps) yVec = nan(numPkts,1); evmVec = nan(numPkts,1); wVec = zeros(ttlTaps,1); adaptVec = nan(numPkts,1); figure subplot(2,2,1) evmPlot = stem(wVec); grid on; axis([1 ttlTaps 0 1.8]) xlabel('Taps'); ylabel('|Weights|'); title('Tap Weight Magnitude') subplot(2,2,2) scatter = plot(yVec, '.'); axis square; axis([-1.2 1.2 -1.2 1.2]); grid on xlabel('In-phase'); ylabel('Quadrature'); title('Scatter Plot'); subplot(2,2,3) adaptState = plot(adaptVec); grid on; axis([0 numPkts -0.2 1.2]) ylabel('Training'); xlabel('Symbols'); title('Adapt Weights Signal') subplot(2,2,4) errPlot = plot(evmVec); grid on; axis([1 numPkts 0 100]) xlabel('Symbols'); ylabel('EVM (%)'); title('EVM') end
Эта функция помощника обновляет фигуры.
function updateFigures(errPlot,evmPlot,scatSym, ... adaptState,w,y,evmEst,adaptWts,p,numFrames) persistent yVec evmVec adaptVec if p == 1 yVec = nan(numFrames,1); evmVec = nan(numFrames,1); adaptVec = nan(numFrames,1); end yVec(p) = y; evmVec(p) = evmEst; adaptVec(p) = adaptWts; errPlot.YData = abs(evmVec); evmPlot.YData = abs(w); scatSym.XData = real(yVec); scatSym.YData = imag(yVec); adaptState.YData = adaptVec; drawnow limitrate end
Эта функция помощника применяет коррекцию фазы.
function y = phaseCorrection(y) a = angle(y((real(y) > 0) & (imag(y) > 0))); a(a < 0.1) = a(a < 0.1) + pi/2; theta = mean(a) - pi/4; y = y * exp(-1i*theta); end
Восстановите символы QPSK в исчезающих средах с эквалайзером обратной связи решения, с помощью алгоритма наименьшее количество средних квадратичных (LMS). Используйте reset
возразите функции, чтобы компенсировать независимые пакеты. Используйте функции помощника, чтобы сгенерировать графики. Этот пример также показывает основанную на символе обработку и основанную на системе координат обработку.
Настройка
Инициализируйте системные переменные, создайте Системный объект эквалайзера и инициализируйте фигуры графика.
M = 4; % QPSK numSym = 1000; numTrainingSym = 100; numPackets = 5; refTap = 5; nFwdTaps = 9; nFdbkTaps = 4; ttlTaps = nFwdTaps + nFdbkTaps; stepsz = 0.01; ttlNumSym = numSym + numTrainingSym; raylChan = comm.RayleighChannel('PathDelays',[0 1], ... 'AveragePathGains',[0 -9], ... 'MaximumDopplerShift',0, ... 'PathGainsOutputPort',true); SNR = 35; rxVec = zeros(ttlNumSym,numPackets); txVec = zeros(ttlNumSym,numPackets); yVec = zeros(ttlNumSym,1); eVec = zeros(ttlNumSym,1); dfeq1 = comm.DecisionFeedbackEqualizer('Algorithm','LMS', ... 'NumForwardTaps',nFwdTaps,'NumFeedbackTaps',nFdbkTaps,'ReferenceTap',refTap, ... 'StepSize',stepsz,'TrainingFlagInputPort',true); [errPlot,wStem,hStem,scatPlot] = initFigures(ttlNumSym,ttlTaps, ... raylChan.AveragePathGains);
Основанная на символе обработка
Для основанной на символе обработки обеспечьте один символ во входе эквалайзера. Сбросьте состояние эквалайзера и канал после обработки каждого пакета.
for p = 1:numPackets trainingFlag = true; for q=1:ttlNumSym data = randi([0 M-1],1,1); tx = pskmod(data,M,pi/4); [xc,pg] = raylChan(tx); rx = awgn(xc,25); [y,err,wts] = dfeq1(rx,tx,trainingFlag);
Отключите обучение после обработки numTrainingSym
учебные символы.
if q == numTrainingSym trainingFlag = false; end updateFigures(errPlot,wStem,hStem,scatPlot,err,wts,y,pg,q,ttlNumSym); txVec(q,p) = tx; rxVec(q,p) = rx; end
После обработки каждого пакета сброс Системный объект канала, чтобы получить новую реализацию канала касается и Системный объект эквалайзера, чтобы восстановить веса касаний по умолчанию.
reset(raylChan)
reset(dfeq1)
end
Основанная на пакете обработка
Для основанной на пакете обработки обеспечьте один пакет во входе эквалайзера. Каждый пакет содержит ttlNumSym
символы. Поскольку учебная длительность меньше пакетной длины, вы не должны задавать вход начинать-обучения.
yVecPkt = zeros(ttlNumSym,numPackets); errVecPkt = zeros(ttlNumSym,numPackets); wgtVecPkt = zeros(ttlTaps,numPackets); dfeq2 = comm.DecisionFeedbackEqualizer('Algorithm','LMS', ... 'NumForwardTaps',nFwdTaps,'NumFeedbackTaps',nFdbkTaps,'ReferenceTap',refTap, ... 'StepSize',stepsz); for p = 1:numPackets [yVecPkt(:,p),errVecPkt(:,p),wgtVecPkt(:,p)] = ... dfeq2(rxVec(:,p),txVec(1:numTrainingSym,p)); for q=1:ttlNumSym updateFigures(errPlot,wStem,hStem,scatPlot, ... errVecPkt(q,p),wgtVecPkt(:,p),yVecPkt(q,p),pg,q,ttlNumSym); end
После обработки каждого пакета сброс Системный объект канала, чтобы получить новую реализацию канала касается и Системный объект эквалайзера, чтобы восстановить веса касаний по умолчанию.
reset(raylChan)
reset(dfeq2)
end
Функции помощника
Эта функция помощника инициализирует фигуры.
function [errPlot,wStem,hStem,scatPlot] = initFigures(ttlNumSym,ttlTap,pg) yVec = nan(ttlNumSym,1); eVec = nan(ttlNumSym,1); wVec = zeros(ttlTap,1); figure; subplot(2,2,1); wStem = stem(wVec); axis([1 ttlTap 0 1.8]); grid on xlabel('Taps'); ylabel('|Weights|'); title('Tap Weight Magnitude') subplot(2,2,2); hStem = stem([0 abs(pg) 0]); grid on; xlabel('Taps'); ylabel('|Path Gain|'); title('Channel Path Gain Magnitude') subplot(2,2,3); errPlot = plot(eVec); axis([1 ttlNumSym 0 1.2]); grid on xlabel('Symbols'); ylabel('|Error Magnitude|'); title('Error Magnitude') subplot(2,2,4); scatPlot = plot(yVec,'.'); axis square; axis([-1.2 1.2 -1.2 1.2]); grid on; xlabel('In-phase'); ylabel('Quadrature'); title(sprintf('Scatter Plot')); end
Эта функция помощника обновляет фигуры.
function updateFigures(errPlot,wStem,hStem,scatPlot, ... err,wts,y,pg,p,ttlNumSym) persistent yVec eVec if p == 1 yVec = nan(ttlNumSym,1); eVec = nan(ttlNumSym,1); end yVec(p) = y; eVec(p) = abs(err); errPlot.YData = abs(eVec); wStem.YData = abs(wts); hStem.YData = [0 abs(pg) 0]; scatPlot.XData = real(yVec); scatPlot.YData = imag(yVec); drawnow limitrate end
Можно сконфигурировать эквалайзер, чтобы действовать в качестве расположенного с интервалами символом эквалайзера или в качестве дробного расположенного с интервалами символом эквалайзера.
Чтобы работать эквалайзером с расположенным с интервалами символом уровнем, задайте количество выборок на символ как 1
. Эквалайзеры уровня символа имеют касания, расположенные с интервалами в длительности символа. Эквалайзеры уровня символа чувствительны к синхронизации фазы.
Чтобы работать эквалайзером с дробным расположенным с интервалами символом уровнем, задайте количество входных выборок на символ как целое число, больше, чем 1
и обеспечьте входной сигнал, сверхдискретизированный на той частоте дискретизации. Дробные расположенные с интервалами символом эквалайзеры имеют касания, расположенные с интервалами в целочисленной части длительности вводимого символа. Дробные расположенные с интервалами символом эквалайзеры не чувствительны к синхронизации фазы.
Эквалайзер обратной связи решения (DFE) является нелинейным эквалайзером, который уменьшает интерференцию межсимвола (ISI) в выборочных частотой каналах. Если пустой указатель существует в частотной характеристике канала, DFEs не улучшают шум. DFE состоит из коснувшейся линии задержки, которая хранит выборки от входного сигнала и содержит прямой фильтр и фильтр обратной связи. Прямой фильтр похож на линейный эквалайзер. Фильтр обратной связи содержит коснувшуюся линию задержки, входные параметры которой являются решениями, принятыми о компенсируемом сигнале. Однажды на период символа, эквалайзер выводит взвешенную сумму значений в линии задержки и обновляет веса, чтобы подготовиться к следующему периоду символа.
DFEs может быть расположен с интервалами символом или дробный расположенный с интервалами символом.
Для расположенного с интервалами символом эквалайзера количество выборок на символ, K, равняется 1. Выходная частота дискретизации равняется входной частоте дискретизации.
Для дробного расположенного с интервалами символом эквалайзера количество выборок на символ, K, является целым числом, больше, чем 1. Как правило, K 4 для дробных расположенных с интервалами символом эквалайзеров. Выходная частота дискретизации является 1/T, и входной частотой дискретизации является K/T. Коснитесь обновление веса происходит при норме выработки.
Это схематические показы дробный расположенный с интервалами символом DFE в общей сложности с весами N, периодом символа T и выборками K на символ. Фильтр имеет L прямые веса и N-L веса обратной связи. Прямой фильтр наверху, и фильтр обратной связи в нижней части. Если K равняется 1, результатом является расположенный с интервалами символом DFE вместо дробного расположенного с интервалами символом DFE.
В каждый период символа эквалайзер получает выборки входа K в прямом фильтре и одно решение или обучающую выборку в фильтре обратной связи. Эквалайзер затем выводит взвешенную сумму значений в форварде и линиях задержки обратной связи и обновляет веса, чтобы подготовиться к следующему периоду символа.
Примечание
Алгоритм для блока Adaptive Algorithm в схематическом совместно оптимизирует веса обратной связи и форвард. Объединенная оптимизация особенно важна для сходимости в алгоритме рекурсивного наименьшего квадрата (RLS).
Для получения дополнительной информации смотрите Эквализацию.
Для LMS-алгоритма, в предыдущем схематическом, w является вектором из всех весов wi, и u является вектором из всех входных параметров ui. На основе текущего набора весов LMS-алгоритм создает новый набор весов как
w, новый = w, текущий + (StepSize) u e*.
Размер шага, используемый адаптивным алгоритмом, задан как положительная скалярная величина. Увеличение размера шага уменьшает время сходимости эквалайзера, но заставляет компенсируемый выходной сигнал быть менее устойчивым. Чтобы определить максимальный размер шага, позволенный при использовании адаптивного алгоритма LMS, используйте maxstep
объектная функция. Оператор * обозначает сопряженное комплексное число и ошибочное вычисление e = d - y.
Для алгоритма RLS, в предыдущем схематическом, w является вектором из всех весов wi, и u является вектором из всех входных параметров ui. На основе текущего набора входных параметров, u, и матрицы обратной корреляции, P, алгоритм RLS сначала вычисляет вектор усиления Кальмана, K, как
Фактор упущения, используемый адаптивным алгоритмом, задан как скаляр в области значений (0, 1]. Уменьшение фактора упущения уменьшает время сходимости эквалайзера, но заставляет компенсируемый выходной сигнал быть менее устойчивым. H обозначает, что Эрмитовы транспонируют. На основе текущей матрицы обратной корреляции новая матрица обратной корреляции
На основе текущего набора весов алгоритм RLS создает новый набор весов как
w, новый = w current+K*e.
Оператор * обозначает сопряженное комплексное число и ошибочное вычисление e = d - y.
Для CMA адаптивный алгоритм, в предыдущем схематическом, w является вектором из всех весов wi, и u является вектором из всех входных параметров ui. На основе текущего набора весов CMA адаптивный алгоритм создает новый набор весов как
w, новый = w, текущий + (StepSize) u *e.
Размер шага, используемый адаптивным алгоритмом, задан как положительная скалярная величина. Увеличение размера шага уменьшает время сходимости эквалайзера, но заставляет компенсируемый выходной сигнал быть менее устойчивым. Чтобы определить максимальный размер шага, позволенный CMA адаптивный алгоритм, используйте maxstep
объектная функция. Оператор * обозначает сопряженное комплексное число и ошибочное вычисление e = y (R - |y|2), где R является константой, связанной с сигнальным созвездием.
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.