Сверточная нейронная сеть Pretrained ShuffleNet
ShuffleNet является сверточной нейронной сетью, которая обучена больше чем на миллионе изображений от базы данных ImageNet [1]. Сеть может классифицировать изображения в 1 000 категорий объектов, таких как клавиатура, мышь, карандаш и многие животные. В результате сеть изучила богатые представления функции для широкого спектра изображений. Сеть имеет входной размер изображений 224 224. Для большего количества предварительно обученных сетей в MATLAB® смотрите Предварительно обученные Глубокие нейронные сети.
Можно использовать classify
классифицировать новые изображения с помощью модели ShuffleNet. Выполните шаги, Классифицируют Изображение Используя GoogLeNet и заменяют GoogLeNet на ShuffleNet.
Чтобы переобучить сеть на новой задаче классификации, выполните шаги, Обучают Нейронную сеть для глубокого обучения Классифицировать Новые Изображения и загружать ShuffleNet вместо GoogLeNet.
[1] ImageNet. http://www.image-net.org
[2] Чжан, Xiangyu, Синьюй Чжоу, Мэнсяо Линь и Цзянь Сунь. "ShuffleNet: Чрезвычайно Эффективная Сверточная нейронная сеть для Мобильных устройств". arXiv предварительно распечатывают arXiv:1707.01083v2 (2017).
DAGNetwork
| Deep Network Designer | densenet201
| googlenet
| inceptionresnetv2
| layerGraph
| nasnetlarge
| nasnetmobile
| plot
| resnet101
| resnet50
| squeezenet
| trainNetwork
| vgg16
| vgg19