BoundaryCondition Properties

Граничное условие для модели PDE

BoundaryCondition объект задает тип граничного условия УЧП на наборе контуров геометрии. PDEModel объект содержит вектор из BoundaryCondition объекты в его BoundaryConditions свойство.

Задайте граничные условия для своей модели с помощью applyBoundaryCondition функция.

Свойства

развернуть все

Граничный тип, возвращенный как 'dirichlet'Нейман , или 'mixed'.

Пример: applyBoundaryCondition(model,'dirichlet','Face',3,'u',0)

Типы данных: char

Геометрический тип области, возвращенный как 'Face' для 3-D геометрии или 'Edge' для 2D геометрии.

Пример: applyBoundaryCondition(model,'dirichlet','Face',3,'u',0)

Типы данных: char | string

Геометрический ID области, возвращенный как вектор из положительных целых чисел. Найдите идентификаторы области при помощи pdegplot с 'FaceLabels' (3-D) или 'EdgeLabels' (2D) набор значений к 'on'.

Пример: applyBoundaryCondition(model,'dirichlet','Face',3:6,'u',0)

Типы данных: double

Условие Дирихле h*u = r, возвращенный как вектор с элементами N или указателем на функцию. N является количеством УЧП в системе. Для синтаксиса формы указателя на функцию r, смотрите Непостоянные Граничные условия.

Пример: 'r',[0;4;-1]

Типы данных: double | function_handle
Поддержка комплексного числа: Да

Условие Дирихле h*u = r, возвращенный как N-by-N матрица, вектор с N ^2 элементы или указатель на функцию. N является количеством УЧП в системе. Для синтаксиса формы указателя на функцию h, смотрите Непостоянные Граничные условия.

Пример: 'h',[2,1;1,2]

Типы данных: double | function_handle
Поддержка комплексного числа: Да

Обобщенное Нейманово условие n·(c×u) + qu = g, возвращенный как вектор с элементами N или указателем на функцию. N является количеством УЧП в системе. Для скалярных УЧП обобщенным Неймановым условием является n·(cu) + qu = g. Для синтаксиса формы указателя на функцию g, смотрите Непостоянные Граничные условия.

Пример: 'g',[3;2;-1]

Типы данных: double | function_handle
Поддержка комплексного числа: Да

Обобщенное Нейманово условие n·(c×u) + qu = g, возвращенный как N-by-N матрица, вектор с N ^2 элементы или указатель на функцию. N является количеством УЧП в системе. Для синтаксиса формы указателя на функцию q, смотрите Непостоянные Граничные условия.

Пример: 'q',eye(3)

Типы данных: double | function_handle
Поддержка комплексного числа: Да

Дирихле условия, возвращенные как вектор из до элементов N или как указатель на функцию. Если u имеет меньше, чем элементы N, затем необходимо также использовать EquationIndex. u и EquationIndex аргументы должны иметь ту же длину. Если u имеет элементы N, затем задавая EquationIndex является дополнительным.

Для синтаксиса формы указателя на функцию u, смотрите Непостоянные Граничные условия.

Пример: applyBoundaryCondition(model,'dirichlet','Face',[2,4,11],'u',0)

Типы данных: double
Поддержка комплексного числа: Да

Индекс известного u компоненты, возвращенные как вектор из целых чисел с записями от 1 к N. EquationIndex и u должен иметь ту же длину.

Пример: applyBoundaryCondition(model,'mixed','Face',[2,4,11],'u',[3,-1],'EquationIndex',[2,3])

Типы данных: double

Векторизованное вычисление функции, возвращенное как 'on' или 'off'. Эта оценка применяется, когда вы передаете указатель на функцию в качестве аргумента. Чтобы сэкономить время в оценке указателя на функцию, задайте 'on', предположение, что ваш указатель на функцию вычисляет векторизованным способом. Смотрите Векторизацию. Для получения дополнительной информации этой оценки, смотрите Непостоянные Граничные условия.

Пример: applyBoundaryCondition(model,'dirichlet','Face',[2,4,11],'u',@ucalculator,'Vectorized','on')

Типы данных: char

Представленный в R2015a
Для просмотра документации необходимо авторизоваться на сайте