pattern

Системный объект: phased.PartitionedArray
Пакет: поэтапный

Постройте разделенную направленность массивов, поле и диаграммы направленности мощности

Синтаксис

pattern(sArray,FREQ)
pattern(sArray,FREQ,AZ)
pattern(sArray,FREQ,AZ,EL)
pattern(___,Name,Value)
[PAT,AZ_ANG,EL_ANG] = pattern(___)

Описание

pattern(sArray,FREQ) строит шаблон направленности трехмерного массива (в dBi) для массива, заданного в sArray. Рабочая частота задана в FREQ.

Интегрирование использовало, когда вычислительная направленность массивов имеет минимальную сетку выборки 0,1 градусов. Если шаблон массивов имеет ширину луча, меньшую, чем это, значение направленности будет неточно.

pattern(sArray,FREQ,AZ) строит шаблон направленности массивов под заданным углом азимута.

pattern(sArray,FREQ,AZ,EL) строит шаблон направленности массивов в заданном азимуте и углах возвышения.

pattern(___,Name,Value) строит шаблон массивов с дополнительными опциями, заданными одним или несколькими Name,Value парные аргументы.

[PAT,AZ_ANG,EL_ANG] = pattern(___) возвращает шаблон массивов в PAT. AZ_ANG выведите содержит координатные значения, соответствующие строкам PAT. EL_ANG выведите содержит координатные значения, соответствующие столбцам PAT. Если 'CoordinateSystem' параметр устанавливается на 'uv', затем AZ_ANG содержит координаты U шаблона и EL_ANG содержит координаты V шаблона. В противном случае они находятся в угловых единицах в градусах. модули UV являются безразмерными.

Примечание

Этот метод заменяет plotResponse метод. Смотрите Преобразуют plotResponse в шаблон для инструкций по тому, как использовать pattern вместо plotResponse.

Входные параметры

развернуть все

Разделенный массив в виде phased.PartitionedArray Системный объект.

Пример: sArray= phased.PartitionedArray;

Частоты для вычислительной направленности и шаблонов в виде положительной скалярной величины или 1 L вектором-строкой с действительным знаком. Единицы частоты находятся в герц.

  • Для антенны, микрофона, или гидрофона гидролокатора или элемента проектора, FREQ должен лечь в области значений значений, заданных FrequencyRange или FrequencyVector свойство элемента. В противном случае элемент не производит ответа, и направленность возвращена как –Inf. Большинство элементов использует FrequencyRange свойство за исключением phased.CustomAntennaElement и phased.CustomMicrophoneElement, которые используют FrequencyVector свойство.

  • Для массива элементов, FREQ должен лечь в частотном диапазоне элементов, которые составляют массив. В противном случае массив не производит ответа, и направленность возвращена как –Inf.

Пример: [1e8 2e6]

Типы данных: double

Углы азимута для вычислительной направленности и шаблона в виде 1 N вектором-строкой с действительным знаком, где N является количеством углов азимута. Угловые модули в градусах. Углы азимута должны находиться между-180 ° и 180 °.

Угол азимута является углом между x - ось и проекцией вектора направления на плоскость xy. Когда измерено от x - оси к y - ось, этот угол положителен.

Пример: [-45:2:45]

Типы данных: double

Углы возвышения для вычислительной направленности и шаблона в виде 1 M вектором-строкой с действительным знаком, где M является количеством желаемых направлений вертикального изменения. Угловые модули в градусах. Угол возвышения должен находиться между-90 ° и 90 °.

Угол возвышения является углом между вектором направления и xy - плоскость. Угол возвышения положителен, когда измерено к z - ось.

Пример: [-75:1:70]

Типы данных: double

Аргументы в виде пар имя-значение

Задайте дополнительные разделенные запятой пары Name,Value аргументы. Name имя аргумента и Value соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Графический вывод системы координат шаблона в виде разделенной запятой пары, состоящей из 'CoordinateSystem' и один из 'polar', 'rectangular', или 'uv'. Когда 'CoordinateSystem' установлен в 'polar' или 'rectangular', AZ и EL аргументы задают азимут шаблона и вертикальное изменение, соответственно. AZ значения должны находиться между-180 ° и 180 °. EL значения должны находиться между-90 ° и 90 °. Если 'CoordinateSystem' установлен в 'uv', AZ и EL затем задайте U и координаты V, соответственно. AZ и EL должен находиться между-1 и 1.

Пример: 'uv'

Типы данных: char

Отображенный тип шаблона в виде разделенной запятой пары, состоящей из 'Type' и один из

  • 'directivity' — шаблон направленности измеряется в dBi.

  • 'efield' — диаграмма направленности по напряжённости поля датчика или массива. Для акустических датчиков отображенный шаблон для скалярного звукового поля.

  • 'power' — диаграмма направленности мощности датчика или массива, заданного как квадрат диаграммы направленности по напряжённости поля.

  • 'powerdb' — диаграмма направленности мощности преобразована в дБ.

Пример: 'powerdb'

Типы данных: char

Отобразите нормированный шаблон в виде разделенной запятой пары, состоящей из 'Normalize'и булевская переменная. Установите этот параметр на true отобразить нормированный шаблон. Этот параметр не применяется, когда вы устанавливаете 'Type' к 'directivity'. Шаблоны направленности уже нормированы.

Типы данных: логический

Графический вывод стиля в виде разделенной запятой пары, состоящей из 'Plotstyle' и любой 'overlay' или 'waterfall'. Этот параметр применяется, когда вы задаете несколько частот в FREQ в 2D графиках. Можно построить 2D графики путем установки одного из аргументов AZ или EL к скаляру.

Типы данных: char

Поляризованный полевой компонент, чтобы отобразиться в виде разделенной запятой пары, состоящей из 'Поляризации' и 'combined'H, или 'V'. Этот параметр применяется только, когда датчики способны к поляризации и когда 'Type' параметр не устанавливается на 'directivity'. Эта таблица показывает значение параметров отображения.

'Polarization'Отображение
'combined'Объединенный H и компоненты поляризации V
'H'Компонент поляризации H
'V'Компонент поляризации V

Пример: 'V'

Типы данных: char

Скорость распространения сигнала в виде разделенной запятой пары, состоящей из 'PropagationSpeed' и положительная скалярная величина в метрах в секунду.

Пример: 'PropagationSpeed',physconst('LightSpeed')

Типы данных: double

Веса подрешетки в виде разделенной запятой пары, состоящей из 'WeightsN-by-1 вектор-столбец с комплексным знаком или N-by-M матрица с комплексным знаком. Размерность N является количеством подрешеток в массиве. Размерность L является количеством частот, заданных FREQ аргумент.

Weights размерностьFREQ размерностьЦель
N-by-1 вектор-столбец с комплексным знакомСкаляр или 1 L вектором-строкойПрименяет набор весов для одной частоты или для всех частот L.
N-by-L матрица с комплексным знаком1 L вектором-строкойПрименяет каждый из столбцов L ‘Weights’ для соответствующей частоты в FREQ аргумент.

Пример: 'Weights',ones(N,M)

Типы данных: double

Угол поворота подрешётки в виде разделенной запятой пары, состоящей из 'SteerAngle' и скаляр или вектор столбцов 2 на 1.

Если 'SteerAngle' вектор столбцов 2 на 1, он имеет форму [azimuth; elevation]. Угол азимута должен быть между-180 ° и 180 °, включительно. Угол возвышения должен быть между-90 ° и 90 °, включительно.

Если 'SteerAngle' скаляр, он задает угол азимута только. В этом случае угол возвышения принят, чтобы быть 0.

Эта опция применяется только когда 'SubarraySteering' свойство Системного объекта установлено в 'Phase' или 'Time'.

Пример: 'SteerAngle',[20;30]

Типы данных: double

Веса элемента подрешетки в виде NSE с комплексным знаком-by-N матрица или 1 N массивом ячеек. Веса применяются к отдельным элементам в подрешетке. Подрешетки могут иметь различные размерности и размеры.

Если ElementWeights NSE с комплексным знаком-by-N матрица, NSE является числом элементов в самой большой подрешетке, и N является количеством подрешеток. Каждый столбец матрицы задает веса для соответствующей подрешетки. Только первые записи K в каждом столбце применяются как веса, где K является числом элементов в соответствующей подрешетке.

Если ElementWeights 1 N массивом ячеек. Каждая ячейка содержит вектор-столбец с комплексным знаком весов для соответствующей подрешетки. Вектор-столбцы имеют длины, равные числу элементов в соответствующей подрешетке.

Зависимости

Чтобы включить эту пару "имя-значение", установите SubarraySteering свойство массива к 'Custom'.

Типы данных: double
Поддержка комплексного числа: Да

Выходные аргументы

развернуть все

Шаблон массивов, возвращенный как M-by-N матрица с действительным знаком. Размерности PAT соответствуйте размерностям выходных аргументов AZ_ANG и EL_ANG.

Углы азимута для отображения направленности или диаграммы направленности, возвращенной как скаляр или 1 N вектором-строкой с действительным знаком, соответствующим размерности, установлены в AZ. Столбцы PAT соответствуйте значениям в AZ_ANG. Модули в градусах.

Углы возвышения для отображения направленности или ответа, возвращенного как скаляр или 1 M вектором-строкой с действительным знаком, соответствующим размерности, установлены в EL. Строки PAT соответствуйте значениям в EL_ANG. Модули в градусах.

Примеры

развернуть все

Постройте ответ азимута ULA с 4 элементами, разделенного в два ULA's с 2 элементами. Интервал элемента является половиной длины волны.

Создайте ULA и разделите его в два ULA's с 2 элементами.

sULA = phased.ULA('NumElements',4,'ElementSpacing',0.5);
sPA = phased.PartitionedArray('Array',sULA,...
    'SubarraySelection',[1 1 0 0;0 0 1 1]);

Постройте ответ азимута массива. Примите, что рабочая частота составляет 1 ГГц, и скорость распространения является скоростью света.

fc = 1e9;
pattern(sPA,fc,[-180:180],0,'Type','powerdb',...
    'CoordinateSystem','polar',...
    'Normalize',true)

Преобразуйте URA 2 на 6 изотропных антенных элементов в 1 3 разделенный массив так, чтобы каждая подрешетка разделенного массива была URA 2 на 2. Примите, что частотная характеристика элементов находится между 1 и 6 ГГц. Элементами является распределенная половина длины волны, независимо соответствующей самой высокой частоте ответа элемента. Постройте азимут, сокращенный от-50 до 50 градусов для различных двух наборов весов. Для разделенных массивов веса применяются к подрешеткам вместо элементов.

Создайте разделенный массив

fmin = 1e9;
fmax = 6e9;
c = physconst('LightSpeed');
lam = c/fmax;
sIso = phased.IsotropicAntennaElement(...
    'FrequencyRange',[fmin,fmax],...
    'BackBaffled',false);
sURA = phased.URA('Element',sIso,'Size',[2,6],...
    'ElementSpacing',[lam/2,lam/2]);
subarraymap = [[1,1,1,1,0,0,0,0,0,0,0,0];...
    [0,0,0,0,1,1,1,1,0,0,0,0];...
    [0,0,0,0,0,0,0,0,1,1,1,1]];
sPA = phased.PartitionedArray('Array',sURA,...
    'SubarraySelection',subarraymap);

Постройте диаграмму направленности мощности

Постройте ответ массива на уровне 5 ГГц в ограниченной области значений углов азимута.

fc = 5e9;
wts = [[1,1,1]',[.862,1.23,.862]'];
pattern(sPA,fc,[-50:0.1:50],0,...
    'Type','powerdb',...
    'CoordinateSystem','polar',...
    'Weights',wts)

График ответа показывает расширение основного лепестка и сокращение силы боковых лепестков, вызванных сужением веса.

Постройте направленность

Постройте сокращение азимута направленности массива на уровне 5 ГГц в ограниченной области значений углов азимута для двух различных наборов весов.

fc = 5e9;
wts = [[1,1,1]',[.862,1.23,.862]'];
pattern(sPA,fc,[-50:0.1:50],0,...
    'Type','directivity',...
    'CoordinateSystem','rectangular',...
    'Weights',wts)

Figure contains an axes. The axes with title Azimuth Cut (elevation angle = 0.0°) contains 2 objects of type line. These objects represent Weights 1, Weights 2.

Больше о

развернуть все

Смотрите также

|

Представленный в R2015a