Клапан для вентиляции жидкости, когда при повышенном давлении
Simscape / Жидкости / Газ / Valves & Orifices / Клапаны регулировки давления
Блок Pressure Relief Valve (G) моделирует отверстие, которое открывается входным давлением, чтобы помешать его уровню достигать экстремальных уровней. При нормальных давлениях закрывается клапан, и только утечка разрабатывает. Выше заданной установки давления клапан начинает открываться, позволяя газу вентилировать из его области высокого давления. Площадь открытия увеличивается с входным давлением до максимального значения, в которой точке клапан полностью открыт, и давление снова свободно повыситься неустанное.
Клапан отвечает или двух входных измерений давления — один относительно выхода или к среде. Выбранное измерение давления упоминается как давление управления клапана, и это влияет на вычисления блока. Параметры блоков Control pressure specification определяют, какое из измерений блок использует в процессе моделирования.
Отношение между площадью открытия и перепадом давления зависит от параметризации клапана. То отношение может принять форму линейного аналитического выражения или (обычно нелинейной) сведенной в таблицу функции.
Поток может быть ламинарным или турбулентным, и он может достигнуть (до) звуковых скоростей. Это происходит в vena contracta, точка только мимо горловины клапана, где поток является и своим самым узким и самым быстрым. Поток затем дросселирует, и его скорость насыщает с понижением нисходящего давления, больше не бывшего достаточного, чтобы увеличить его скорость. Дросселирование появляется, когда отношение противодавления поражает характеристику критического значения клапана. Сверхзвуковой поток не получен блоком.
Давление во входе служит управляющим сигналом клапана. Чем больше его повышение по установке давления клапана, тем больше площадь открытия становится. Входное измерение давления, однако, может быть относительно выхода или среды. Выбор ссылки зависит от установки параметров блоков Pressure control specification — любой Pressure differential
или Pressure at port A
. Термин контролирует давление, используется здесь, чтобы относиться к обоим измерениям.
Pressure differential
Когда параметр Pressure control specification устанавливается на Pressure differential
(настройка по умолчанию), давление управления вычисляется как:
где p является мгновенным давлением. Индекс Ctl
обозначает значение управления и индексы A и B вход и выход, соответственно. Давления порта являются мгновенными значениями, определенными в процессе моделирования. Установка давления аналогично задана как:
где P является параметром постоянного давления. Индекс Set
обозначает установку клапана (здесь дифференциал). Термин в круглых скобках получен как константа из параметров блоков Set pressure differential. Так же при максимальном давлении клапана (в котором клапан полностью открыт):
где ΔP относится в частности к области значений регулирования давления клапана, полученного как константа из параметров блоков того же имени. Индекс Max
обозначает максимальное значение.
Pressure at port A
Когда параметр Pressure control specification устанавливается на Pressure at port A
, давление управления вычисляется как:
где индекс Atm
обозначает атмосферное значение (заданный для модели как константа в блоке Gas Properties (G) библиотеки Simscape Foundation). Давление порта является мгновенным значением, определенным в процессе моделирования. Для установки давления:
где индекс A,Set
обозначает установку клапана в виде абсолютного давления в порте A. Это значение получено как константа из параметров блоков Set pressure (gauge). Максимальное давление клапана:
(где, как прежде, ΔP относится в частности к области значений регулирования давления клапана).
Степень, к которой давление управления превышает установку давления, определяет, сколько откроет клапан. Перерегулирование давления описывается здесь как часть (ширина) область значений регулирования давления:
Давление управления (p Ctl), установка давления (Набор p), и область значений регулирования давления (ΔP) является заданными для выбранной спецификации давления управления (Pressure differential
или Pressure at port A
).
Часть — технически, нормированное перерегулирование — оценена в 0
при полностью закрытом клапане и 1
при полностью открытом клапане. Если вычисление должно возвратить значение за пределами этих границ, самый близкий из этих двух используется вместо этого. (Другими словами, часть насыщает в 0
и 1
.)
Нормированный (и насыщаемый) перерегулирование давления управления охватывает три области. Ниже установки давления клапана его значение является постоянным нулем. Выше максимального давления — суммы установки давления и области значений регулирования давления — это - 1
. Промежуточный, это варьируется, как линейная функция измерения давления управления, p Ctl.
Переходы между областями резки и их прерывистые наклоны. Они ставят проблему к решателям переменного шага (вид, обычно используемый с моделями Simscape). Чтобы точно получить разрывы, упомянутые в некоторых контекстах как нулевые события пересечения, решатель должен уменьшать свой временной шаг, делая паузу кратко во время пересечения для того, чтобы повторно вычислить его якобиевскую матрицу (представление зависимостей между переменными состояния модели и их производных времени).
Эта стратегия решателя эффективна и устойчива, когда разрывы присутствуют. Это делает решатель менее подверженным ошибкам сходимости — но это может значительно расширить время, должен был закончить запущенную симуляцию, возможно, чрезмерно так для практического применения в режиме реального времени симуляция. Альтернативный подход, используемый здесь, должен удалить разрывы в целом.
Нормированное перерегулирование давления с резкими переходами
Блок удаляет разрывы путем сглаживания их по шкале требуемого времени. Сглаживание, которое добавляет небольшое искажение в перерегулирование давления управления, гарантирует, что простота клапана в его ограничивающие положения, а не привязывается (резко) в них. Сглаживание является дополнительным: можно отключить его путем обнуления его масштаба времени. Форма и шкала сглаживания, когда применено, выводят частично из кубических полиномов:
и
где
и
В уравнениях:
ƛ L является выражением сглаживания для перехода от максимально закрытой позиции.
ƛ R является выражением сглаживания для перехода от положения полностью открытого отверстия.
Δp* является (безразмерной) характеристической шириной области сглаживания давления:
где f* является коэффициентом сглаживания, оцененным между 0
и 1
и полученный из параметров блоков того же имени.
Когда коэффициентом сглаживания является 0
, перерегулирование давления управления остается в своей исходной форме — никакое примененное сглаживание — и его переходы не остается резким. Когда это - 1
, сглаживание порождает всю линейную оболочку столбцов регулирования давления (с перерегулированием давления управления, принимающим форму S-кривой).
В промежуточных значениях сглаживание ограничивается частью той области значений. Значение 0.5
, например, будет сглаживать переходы более чем четверть области значений регулирования давления на каждой стороне (для общей сглаженной области половины области значений регулирования).
Сглаживание добавляет две новых области в перерегулирование давления управления — один для плавного перехода слева, другого для того справа, давая в общей сложности пять областей. Они описываются в кусочно-линейной функции:
где звездочка обозначает сглаживавшую переменную. Рисунок показывает эффект сглаживания на резкости переходов.
В то время как нормированные контролируют давление, варьируется в процессе моделирования, также - массовый расход жидкости через клапан. Отношение между этими двумя переменными, однако, является косвенным. Массовый расход жидкости задан в терминах проводимости звука клапана и именно этого количества, нормированное входное давление определяет.
Проводимость звука, если вы незнакомы с ним, описывает простоту, с которой будет течь газ, когда это будет дросселироваться — когда его скорость в его теоретическом максимуме (локальная скорость звука). Его измерение и вычисление покрыты подробно в стандарте ISO 6358 (на котором этот блок базируется).
О только одном значении обычно сообщают в таблицах данных клапана: один взятый в устойчивом состоянии в положении полностью открытого отверстия. Это - то же самое, заданное в параметре Sonic conductance at maximum flow, когда установкой Valve parameterization является Sonic conductance
. Для значений через вводную область значений клапана этот максимум масштабируется нормированным перерегулированием давления:
где C является проводимостью звука и индексами Max
и Min
обозначьте его значения при полностью открытом и полностью закрытом клапане.
Поскольку проводимость звука не может быть доступной (или самый удобный выбор для вашей модели), блок обеспечивает несколько эквивалентной параметризации. Используйте Valve parameterization выпадающий список, чтобы выбрать лучшее для данных под рукой. Параметризация:
Restriction area
Sonic conductance
Cv coefficient (USCS)
Kv coefficient (SI)
Параметризация отличается только по данным, которых они требуют вас. Их вычисления массового расхода жидкости все еще основаны на проводимости звука. Если вы выбираете параметризацию кроме Sonic conductance
, затем блок преобразует альтернативные данные — (вычисленную) площадь открытия или (заданный) коэффициент потока — в эквивалентную проводимость звука.
Коэффициенты потока измеряют то, что является, в основе, тем же количеством — скорость потока жидкости через клапан в некоторых согласованных температурный и перепад давления. Они отличаются только по стандартным условиям, используемым в их определении и в физических единицах измерения, используемых в их выражении:
C v измеряется при общепринятой температуре 60 ℉
и перепад давления 1 PSI
; это описывается в имперских модулях US gpm
. Это - коэффициент потока, используемый в модели, когда параметры блоков Valve parameterization установлены в Cv coefficient (USCS)
.
K v измеряется при общепринятой температуре 15 ℃
и перепад давления 1 bar
; это описывается в метрических модулях m3/h
. Это - коэффициент потока, используемый в модели, когда параметры блоков Valve parameterization установлены в Kv coefficient (SI)
.
Если параметризация клапана установлена в Cv Coefficient (USCS)
, проводимость звука вычисляется в максимально закрытых и полностью открытых положениях клапана из параметров блоков Cv coefficient (SI) at leakage flow и Cv coefficient (SI) at maximum flow:
где C v является содействующим значением потока в максимальной или утечке. Дозвуковой индекс, m, установлен в 0.5
и критическое отношение давления, b cr, установлено в 0.3
. (Они используются в вычислениях массового расхода жидкости, данных в разделе Momentum Balance.)
Если Kv coefficient (SI)
параметризация используется вместо этого, проводимость звука вычисляется в тех же положениях клапана (максимально закрытый и полностью открытый) от параметров блоков Kv coefficient (USCS) at leakage flow и Kv coefficient (USCS) at maximum flow:
где K v является содействующим значением потока в максимальной или утечке. Дозвуковой индекс, m, установлен в 0.5
и критическое отношение давления, b cr, установлено в 0.3
.
Для Restriction area
параметризация, проводимость звука вычисляется (в тех же положениях клапана) от Maximum opening area и параметров блоков Leakage area:
где S является площадью открытия в максимальной или утечке. Дозвуковой индекс, m, установлен в 0.5
в то время как критическое отношение давления, b cr вычисляется из выражения:
Причины падения давления, происходящих в каналах клапана, проигнорированы в блоке. Безотносительно их характера — внезапных изменений сечения, искривлений линии потока — только их совокупный эффект рассматривается во время моделирования. Этот эффект принят, чтобы отразиться полностью в проводимости звука клапана (или в данных альтернативной параметризации клапана).
Когда поток дросселируется, массовый расход жидкости является функцией проводимости звука клапана и термодинамических условий (давление и температура), установленное во входе. Функция линейна относительно давления:
где:
C является проводимостью звука в клапане. Его значение получено из параметров блоков того же имени или преобразованием других параметров блоков (точный источник в зависимости от установки Valve parameterization).
ρ является плотностью газа, здесь при стандартных условиях (индекс 0
), полученный из параметров блоков Reference density.
p является абсолютным давлением газа, здесь соответствуя входу (in
).
T является температурой газа во входе (in
) или при стандартных условиях (0
), последний, полученный из параметров блоков Reference temperature.
Когда поток является дозвуковым, и поэтому больше не дросселируемый, массовый расход жидкости становится нелинейной функцией давления — оба во входе, а также уменьшаемом значении при выходе. В режиме турбулентного течения (с давлением выхода, содержавшимся в отношении противодавления клапана), выражение массового расхода жидкости:
где:
p r является отношением противодавления, или что между давлением выхода (p) и входным давлением (p в):
b cr является критическим отношением давления, в котором поток становится дросселируемым. Его значение получено из параметров блоков того же имени или преобразованием других параметров блоков (точный источник в зависимости от установки Valve parameterization).
m является дозвуковым индексом, эмпирический коэффициент, используемый, чтобы более точно охарактеризовать поведение дозвуковых потоков. Его значение получено из параметров блоков того же имени или преобразованием других параметров блоков (точный источник в зависимости от установки Valve parameterization).
Когда поток является ламинарным (и все еще дозвуковым), изменения выражения массового расхода жидкости в:
где бегство b является критическим отношением давления, при котором происходит смена ламинарного на турбулентный режим течения (полученный из параметров блоков Laminar flow pressure ratio). При объединении выражений массового расхода жидкости в одну (кусочную) функцию, дает:
с верхней строкой, соответствующей дозвуковому и ламинарному течению, средней строке к дозвуковому и турбулентному течению и нижнему ряду к дросселируемому (и поэтому звуковой) поток.
Объем жидкости в клапане, и, следовательно, его масса, приняты, очень маленькими, и это, для целеймоделирования, проигнорировано. В результате никакое количество газа не может накопиться там. По принципу сохранения массы массовый расход жидкости в клапан через один порт должен равняться расходу из клапана через другой порт:
где задан как массовый расход жидкости в клапан через порт A или B. Обратите внимание на то, что в этом блоке поток может достигнуть, но не превысить звуковые скорости.
Клапан моделируется как адиабатический компонент. Никакой теплообмен не может находиться между газом и стенкой, которая окружает его. Никакие работа сделана на или газом, как это протекает от входного отверстия до выхода. С этими предположениями энергия может течь адвекцией только через порты A и B. По принципу сохранения энергии сумма энергетических потоков в портах должна затем всегда равняться нулю:
где ϕ задан как энергетическая скорость потока жидкости в клапан через один из портов (A или B).