Фотодиод с инцидентным входным портом потока
Simscape / Электрический / Sensors & Transducers
Блок Photodiode представляет фотодиод как управляемый текущий источник и экспоненциальный диод, соединенный параллельно. Управляемый текущий источник производит текущий Ip, который пропорционален излучающей плотности потока:
Ip = DeviceSensitivity · RadiantFluxDensity | (1) |
где:
DeviceSensitivity является отношением тока, произведенного для инцидентной излучающей плотности потока.
Если вы выбираете Specify measured current for given flux density
для параметра Sensitivity parameterization блок вычисляет эту переменную путем преобразования значения параметров Measured current в модули амперов и деления его на значения параметров Flux density.
Если вы выбираете Specify current per unit flux density
для параметра Sensitivity parameterization эта переменная задана значением параметров Device sensitivity.
RadiantFluxDensity является инцидентной излучающей плотностью потока.
Чтобы смоделировать динамическое время отклика, используйте параметр Parameterization во вкладке Junction capacitance, чтобы включать диодную емкость перехода в модель.
Экспоненциальная диодная модель обеспечивает следующее отношение между диодом, текущим я и диодным напряжением V:
где:
q является элементарным зарядом на электроне (1.602176e–19 Кулоны).
k является Постоянная Больцмана (1.3806503e–23 J/K).
N является коэффициентом эмиссии.
IS является текущим насыщением, который равен значению параметров Dark current.
Tm1 является температурой, при которой диодные параметры заданы, как задано значением параметров Measurement temperature.
Когда (q V / N k Tm1)> 80, замены блока с (q V / N k Tm1 – 79) e80, который совпадает с градиентом диода, текущего в (q V / N k Tm1) = 80, и экстраполирует линейно. Когда (q V / N k Tm1) <–79, замены блока с (q V / N k Tm1 + 80) электронный 79, который также совпадает с градиентом и экстраполирует линейно. Типичные электрические схемы не достигают этих экстремумов. Блок обеспечивает эту линейную экстраполяцию, чтобы помочь сходимости при решении для ограничений в процессе моделирования.
Когда вы выбираете Use dark current and N
для параметра Diode parameterization вы задаете диод в терминах параметров Emission coefficient N и Dark current. Когда вы выбираете Use dark current plus a forward bias I-V data point
для параметра Diode parameterization вы задаете параметр Dark current и напряжение и текущую точку измерения на диоде кривая I-V. Блок вычисляет N от этих значений можно следующим образом:
где:
VF является значением параметров Forward voltage VF.
Vt = k Tm1 / q.
IF является значением параметров Current IF at forward voltage VF.
Экспоненциальная диодная модель предоставляет возможность включать емкость перехода:
Когда вы выбираете Fixed or zero junction capacitance
для параметра Parameterization фиксируется емкость.
Когда вы выбираете Use parameters CJO, VJ, M & FC
для параметра Parameterization блок использует коэффициенты CJO, VJ, M и FC, чтобы вычислить емкость перехода, которая зависит от напряжения на переходе.
Когда вы выбираете Use C-V curve data points
для параметра Parameterization блок использует три значения емкости на кривой емкости C-V, чтобы оценить CJO, VJ и M и использует эти значения с заданным значением FC, чтобы вычислить емкость перехода, которая зависит от напряжения на переходе. Блок вычисляет CJO, VJ и M можно следующим образом:
где:
VR1, VR2 и VR3 являются значениями в векторе Reverse bias voltages [VR1 VR2 VR3].
C1, C2 и C3 являются значениями в векторе Corresponding capacitances [C1 C2 C3].
Не возможно оценить FC надежно от табличных данных, таким образом, необходимо задать его значение с помощью параметра Capacitance coefficient FC. В отсутствие подходящих данных для этого параметра используйте типичное значение 0,5.
Напряжения обратного смещения (заданный как положительные значения) должны удовлетворить VR3> VR2> VR1. Это означает, что емкости должны удовлетворить C1> C2> C3, когда обратное смещение расширяет область истощения и следовательно уменьшает емкость. Нарушение этих неравенств приводит к ошибке. Напряжения VR2 и VR3 должны хорошо быть вдали от потенциала Соединения VJ. Напряжение VR1 должно быть меньше потенциала Соединения VJ с типичным значением для VR1, являющегося 0,1 В.
Зависимое напряжением соединение задано в терминах устройства хранения данных заряда конденсатора Qj как:
Для V <FC · VJ:
Для V ≥ FC · VJ:
где:
Эти уравнения эквивалентны используемый в [2], за исключением того, что температурная зависимость VJ и FC не моделируется. Эта модель не включает термин емкости диффузии, который влияет на эффективность для приложений переключения высокой частоты.
Блок Photodiode содержит несколько опций для моделирования зависимости диодного отношения текущего напряжения на температуре в процессе моделирования. Температурная зависимость емкости перехода не моделируется, этот являющийся намного меньшим эффектом. Для получения дополнительной информации смотрите страницу с описанием Diode.
Блок имеет дополнительный тепловой порт, скрытый по умолчанию. Чтобы осушить тепловой порт, щелкните правой кнопкой по блоку по своей модели, и затем из контекстного меню выбирают Simscape> Block choices> Show thermal port. Это действие отображает тепловой порт H на значке блока и отсоединяет параметры Thermal Port.
Используйте тепловой порт, чтобы симулировать эффекты выработанного тепла и температуры устройства. Для получения дополнительной информации об использовании тепловых портов и на параметрах Thermal Port, смотрите Термальные эффекты Симуляции в Полупроводниках.
Используйте раздел Variables интерфейса блока, чтобы установить приоритет и начальные целевые значения для переменных в блоках до симуляции. Для получения дополнительной информации смотрите Приоритет Набора и Начальную Цель для Переменных в блоках.
Когда вы выбираете Use dark current plus a forward bias I-V curve data point
для параметра Diode parameterization выберите напряжение около диодного поворота - на напряжении. Обычно это будет в диапазоне от 0,05 до 1 вольта. Используя значение за пределами этой области может привести к плохой оценке для N.
Вы, возможно, должны использовать ненулевые омические значения сопротивления и емкости перехода, чтобы предотвратить числовые проблемы симуляции, но симуляция может запуститься быстрее с этими обнуленными значениями.
[1] Х. Ахмед и П.Дж. Спридбери. Аналоговая и цифровая электроника для инженеров. 2-й Выпуск, издательство Кембриджского университета, 1984.
[2] Г. Массобрио и П. Антоньетти. Полупроводниковое моделирование устройства с SPICE. 2-й выпуск, McGraw-Hill, 1993.