Дискретное время или непрерывное время синхронная машина ST1C статическая система возбуждения с автоматическим регулятором напряжения
Simscape / Электрический / Управление / Управление SM
Блок SM ST1C реализует синхронную машину тип ST1C статическая системная модель возбуждения в соответствии с IEEE 421.5-2016 [1].
Используйте этот блок, чтобы смоделировать управление и регулирование полевого напряжения синхронной машины.
Можно переключиться между непрерывными и дискретными реализациями блока при помощи параметра Sample time (-1 for inherited). Чтобы сконфигурировать интегратор в течение непрерывного времени, установите свойство Sample time (-1 for inherited) на 0
. Чтобы сконфигурировать интегратор в течение дискретного времени, установите свойство Sample time (-1 for inherited) на положительное, ненулевое значение, или на -1
наследовать шаг расчета от восходящего блока.
Блок SM ST1C включает три главных компонента:
Текущий Компенсатор изменяет измеренное терминальное напряжение в зависимости от терминального тока.
Преобразователь Измерения Напряжения симулирует динамику терминального преобразователя напряжения с помощью фильтра lowpass.
Компонент Элементов управления Возбуждения сравнивает преобразователь напряжения выход с терминальной ссылкой напряжения, чтобы произвести ошибку напряжения. Эта ошибка напряжения затем передается через регулятор напряжения, чтобы произвести полевое напряжение.
Эта схема показывает полную структуру системной модели возбуждения ST1C:
В схеме:
VT и IT являются измеренным терминальным напряжением и текущий из синхронной машины.
VC1 является компенсированным текущим образом терминальным напряжением.
VC является отфильтрованным, компенсированным текущим образом терминальным напряжением.
VREF является ссылочным терминальным напряжением.
VS является напряжением стабилизатора энергосистемы.
EFD и IFD являются полевым напряжением и текущий, соответственно.
Следующие разделы описывают каждую из больших частей блока подробно.
Текущий компенсатор моделируется как:
где:
RC является сопротивлением компенсации загрузки.
XC является реактивным сопротивлением компенсации загрузки.
Преобразователь измерения напряжения реализован как блок Low-Pass Filter с постоянной времени TR. Обратитесь к документации для блока Low-Pass Filter для дискретных и непрерывных реализаций.
Эта схема иллюстрирует полную структуру элементов управления возбуждения:
В схеме:
Подсистема Логики Точки Суммирования моделирует входное местоположение точки суммирования для ограничителя перевозбуждения (OEL), ограничителя недовозбуждения (UEL), статора текущего ограничителя (SCL) и селектора выключателя питания (V_S) напряжения. Для получения дополнительной информации об использовании ограничителей с этим блоком смотрите Поле Текущие Ограничители.
Существует две подсистемы Логики Поглощения. Подсистемы моделируют входное местоположение точки поглощения для OEL, UEL, SCL и напряжений PSS. Для получения дополнительной информации об использовании ограничителей с этим блоком смотрите Поле Текущие Ограничители.
Две модели блоков Lead-Lag дополнительная динамика сопоставлены с регулятором напряжения. Первый представляет переходное сокращение усиления, где TC является постоянным временем выполнения заказа, и TB является постоянным временем задержки. Последний позволяет возможность представления переходного увеличения усиления, где TC1 является постоянным временем выполнения заказа, и TB1 является постоянным временем задержки. Обратитесь к документации для блока Lead-Lag для дискретных и непрерывных реализаций.
Блок Low-Pass Filter моделирует главную динамику регулятора напряжения. Здесь, KA является усилением регулятора, и TA является главной постоянной времени регулятора. Минимальными и максимальными антизаключительными пределами насыщения для блока является VAmin и VAmax, соответственно.
Блок Filtered Derivative моделирует путь к обратной связи уровня для стабилизации системы возбуждения. Здесь, KF и TF являются усилением и постоянными времени этой системы, соответственно. Обратитесь к документации для блока Filtered Derivative для дискретных и непрерывных реализаций.
Из-за очень высокой возможности принуждения, модель использует поле текущий ограничитель, чтобы защитить ротор генератора и возбудитель. Начальный порог и усиление заданы ILR и KLR, соответственно. Если вы используете явную модель OEL, отключаете это поле текущий ограничитель путем установки усиления, KLR, к 0
.
Можно использовать различное поле текущие ограничители, чтобы изменить выход регулятора напряжения под небезопасными условиями работы:
Используйте ограничитель перевозбуждения, чтобы предотвратить перегрев обмотки возбуждения из-за чрезмерной полевой текущей потребности.
Используйте ограничитель недовозбуждения, чтобы повысить полевое возбуждение, когда это слишком низко, который рискует десинхронизацией.
Используйте статор текущий ограничитель, чтобы предотвратить перегрев обмоток статора из-за сверхтоков.
Присоедините выход любого из этих ограничителей в одной из этих точек:
Точка суммирования как часть обратной связи автоматического регулятора напряжения (AVR)
Точка поглощения, чтобы заменить обычное поведение AVR
Если вы используете статор текущий ограничитель в точке суммирования, используйте один вход VSCLsum. Если вы используете статор текущий ограничитель в точке поглощения, используйте и вход перевозбуждения, VSCLoel, и вход недовозбуждения, VSCLuel.
[1] Методические рекомендации IEEE для системных моделей возбуждения для исследований устойчивости энергосистемы. Станд. IEEE 421.5-2016. Пискатауэй, NJ: IEEE-SA, 2016.